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A B S T R A C T   

The number of large, high-severity wildfires has been increasing across the western United States over the last 
several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the 
resilience of conifer forests, due to alterations in regeneration success or failure. Our research investigates 30 
years of conifer recovery patterns within 34 high-severity wildfire complexes (1988–1991) of the Northern Rocky 
Mountains. We evaluate the capability of snow-cover Landsat to characterize conifer tree recolonization of high- 
severity burn patches. Snow-cover images isolate conifer-specific vegetation signals by diminishing spectral 
contributions from soil and deciduous vegetation. The presence of conifer regeneration was successfully classi-
fied by snow-cover Landsat at >10% canopy cover at 98% accuracy and modeled at 3-year intervals post-fire. 
Spectral detectability of regenerating conifer vegetation began 11–19 years post-fire, varying across forest 
types. Thirty years post-fire, 65% of the total high-severity burn area had been recolonized by conifer trees, with 
differences observed between forest types: 72% of lodgepole pine, 77% of Douglas-fir, and 44% of fir-spruce 
severely burned areas containing conifer regeneration. Projected recovery timelines to pre-fire conifer vegeta-
tion also differed between lodgepole pine (29.5 years), Douglas-fir (36.9 years), and fir-spruce forests (48.7 
years), as estimated from snow-cover NDVI trends. Although we generally documented patterns of conifer 
resilience, we also identified reduced likelihoods of recovery within high-severity burn patches exhibiting greater 
area-to-perimeter ratios, aridity, south-facing aspects, slopes, and elevation. Snow-cover Landsat imagery was 
shown to improve the characterization of post-fire forest recovery and may be applied to support forest resto-
ration decision-making following high-severity wildfire.   

1. Introduction 

Numerous ecosystems across the globe have observed significant 
shifts in wildfire patterns, resulting from changes in land use, climate, 
fire suppression, and vegetation composition (Flannigan et al., 2009; 
Jolly et al., 2015; Prichard et al., 2017). Trends of increasing wildfire 
occurrence and extent have been well-documented across the western 
United States (Dennison et al., 2014; Parks and Abatzoglou, 2020; 
Picotte et al., 2016), notably within the Northern Rocky Mountains, a 
region accountable for 60% of the increase in large U.S. wildfires be-
tween 1970 and 2003 (Westerling et al., 2006). Wildfire in the Northern 
Rocky Mountains is anticipated to continue increasing in size and fre-
quency, resulting from lengthening fire seasons, shortened fire return 

intervals, and drier fuel conditions (Morgan et al., 2008; Riley and 
Loehman, 2016; Westerling et al., 2011). Characteristics of wildfire 
severity have also shifted, with trends toward fires burning greater areas 
at high-severity and increasing average burn severity (Parks and Abat-
zoglou, 2020; Picotte et al., 2016). It is anticipated that increasing 
wildfire size and area burned at high-severity may reduce burn hetero-
geneity and create larger, more simply-shaped, high-severity burn 
patches (Harvey et al., 2016c). 

Although fire is an important fixture in the disturbance regimes of 
conifer-dominated Northern Rocky Mountain forests, it is unclear how 
the increasing occurrence of high-severity events will impact forest 
resilience. Increasing prevalence of larger, more simply shaped high- 
severity patches may impede forest recovery by reducing access to 
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seed sources, as conifer seed dispersal is limited beyond 100 m from 
patch edges in Northern Rocky Mountain forests (Harvey et al., 2016b; 
Kemp et al., 2016). The ability of conifer tree species to effectively 
recolonize high-severity burn patches may be constrained if shortening 
fire return intervals preclude sufficient seed source generation (Stevens- 
Rumann and Morgan, 2016; Turner et al., 2019; Westerling et al., 2011). 
Seedling recruitment may face additional challenges with less-favorable 
climatic conditions for regeneration success following climate change 
(Stevens-Rumann et al., 2018). Forests at transitional edges in the 
Northern Rocky Mountains have exhibited reduced resilience to high- 
severity wildfire and a greater risk of conversion to non-conifer vege-
tation (Davis et al., 2019; Donato et al., 2016; Harvey et al., 2016c; 
Kemp et al., 2019; Parks et al., 2019). 

Increasing wildfire activity and constrained forest recovery have 
many wide-ranging societal and ecological impacts. Wildfire imposes a 
large economic burden, costing billions of dollars annually from inter-
vention and mitigation efforts, losses to timber and agricultural markets, 
and impacts on affected local communities (Bayham et al., 2022; 
Thomas et al., 2017). Furthermore, wildfire imposes social costs from 
loss of personal property, recreation opportunities, and cultural con-
nections to natural areas (Englin et al., 1996; Gellman et al., 2022; 
Vukomanovic and Steelman, 2019). Ecologically, high-severity fire 
disrupts hydrologic patterns by increasing runoff, sedimentation, and 
flooding (Ice et al., 2004; Shakesby and Doerr, 2006). Soil resources are 
also impacted by fire effects, altering physical, chemical, and biological 
properties and processes (Certini, 2005; Ice et al., 2004). The loss of 
forest cover has implications for wildlife, altering habitat suitability and 
biodiversity (Fontaine and Kennedy, 2012; Steel et al., 2022). High- 
severity wildfire also results in increased carbon emissions and re-
duces the ability for forest ecosystems to sequester carbon (Loehman, 
2020; Sommers et al., 2014). 

It is important to characterize post-fire recovery across forest types in 
the Northern Rocky Mountains given the consequences of increased 
high-severity wildfire. Regeneration dynamics after fire are funda-
mental to evaluating how fire regime changes may impact forest re-
covery and support forest management decision-making. Post-fire 
regeneration densities and spatial patterns are commonly assessed 
through a case study approach using data covering relatively small 
spatial extents from plot or transect-based sampling (Chambers et al., 
2016; Kashian et al., 2004; Kemp et al., 2016; Owen et al., 2017). Field 
studies have provided valuable information on forest recovery patterns 
following high-severity burns but can be limited in scope given sampling 
constraints. The cost of field surveys generally precludes comprehensive 
assessment of every fire or region, acquiring repeated measurements, or 
fully characterizing large areas. With millions of acres burned annually, 
case studies alone cannot evaluate post-fire recovery across a full spec-
trum of environmental conditions. Some regions cannot be assessed by 
field studies entirely due to remote locations, inaccessible terrain, or 
resource limitations. Compiling field studies to measure longitudinal or 
regional trends may be challenging due to differing sampling method-
ologies, scales, or forest conditions. National monitoring datasets, such 
as the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA) 
program (Tinkham et al., 2018), do provide long-term data on forest 
growth and compositional trends, but lack the necessary temporal or 
spectral resolution to thoroughly quantify recovery dynamics or target 
specific fire events. There is a need for repeat, consistent, and compre-
hensive data on post-fire forest recovery to adequately identify man-
agement needs and evaluate the impacts of shifting wildfire regimes. 

Remote sensing has been used extensively to monitor fire effects and 
recovery, providing opportunities to conduct repeated monitoring over 
large areas (Szpakowski and Jensen, 2019). The Landsat program has 
been a resource for post-fire monitoring with over 50 years of consistent, 
freely available moderate-resolution (30 m) satellite imagery. Although 
there have been notable technological advances in relevant satellite 
spatial (e.g., Sentinel, WorldView; Howe et al., 2022; Wu et al., 2015) 
and spectral resolution (e.g. ASTER, AVIRIS; Holden et al., 2010; Van 

Wagtendonk et al., 2004), Landsat remains one of the most widely used 
tools to monitor post-fire recovery given its accessibility and availability 
(Chuvieco et al., 2020; Szpakowski and Jensen, 2019). Typical post-fire 
remote sensing assessments measure recovery as a return to pre-fire 
growing-season vegetation greenness, with spectral indices such as the 
Normalized Difference Vegetation Index (NDVI; Szpakowski and Jensen, 
2019; White et al., 1996). Spectral indices including the Normalized 
Burn Ratio (NBR; Bright et al., 2019; Frazier et al., 2018), Enhanced 
Vegetation Index (EVI; Casady et al., 2010), Disturbance Index (Chen 
et al., 2014), and Forest Recovery Index 2 (Morresi et al., 2019) have 
also been used to track post-fire recovery, however, NDVI is popular 
because it is highly correlated with canopy photosynthetic capacity and 
chlorophyll abundance (Myneni et al., 1995). Although growing-season 
spectral indices are a useful measure of vegetation density and green-
ness, they are generally not sensitive to vegetation species assemblages 
or growth form. The lack of specificity in growing-season NDVI, for 
instance, may overestimate rates of post-fire forest recovery by 
conflating the presence of vegetation with the re-establishment of 
coniferous tree cover (Bright et al., 2019; Kiel and Turner, 2022; Van-
derhoof and Hawbaker, 2018). 

Several remote sensing analyses have found success utilizing 
phenologically-informed seasonal imagery to differentiate between 
forest vegetation types (Dymond et al., 2002; Kiel and Turner, 2022; 
Townsend and Walsh, 2001; Wang et al., 2022; Wolter et al., 1995). 
Winter imagery has been shown to specifically improve the discrimi-
nation of evergreen conifer (hereafter conifer) tree presence from other 
vegetation (Vanderhoof et al., 2021; Wolter et al., 2008). By using snow 
cover as a physical and phenological filter, spectral contributions of 
vegetation greenness from deciduous, herbaceous, and low-lying ever-
green vegetation are diminished. Snow-cover imagery has been suc-
cessfully utilized to measure post-fire conifer NDVI trends (Vanderhoof 
et al., 2021; Vanderhoof and Hawbaker, 2018), but has not yet been 
applied to spatially map regenerating conifer vegetation following 
wildfire. Utilizing snow-cover imagery to assess the spatial progression 
of conifer regeneration can create a more detailed picture of post-fire 
recovery that describes the proportion of burn patches reforested by 
conifer species. Pixel-based binary classification of conifer presence or 
absence has the potential to describe post-fire dynamics typically only 
achieved with field studies, but with the larger temporal and spatial 
scales of Landsat. 

Our study applies snow-cover Landsat imagery to spatially charac-
terize conifer regeneration following high-severity wildfires in the 
Northern Rocky Mountains. We focus on 34 high-severity wildfire 
complexes (1988–1991) that occurred following the 1988 North 
American Drought (Trenberth et al., 1988). This series of fire events 
includes 7 of the 38 extreme fire events occurring in the Northern Rocky 
Mountains and Great Basin between 1984 and 2009 (Lannom et al., 
2014). We compare 30 years of conifer regeneration patterns following 
high-severity burns for several conifer-dominated forest types in the 
Northern Rocky Mountains. Our research objectives are to:  

1. Evaluate the ability of Landsat and snow-cover remote sensing to 
detect conifer regeneration.  

2. Characterize conifer recolonization and estimate recovery timelines 
following high-severity wildfire across forest types within the 
Northern Rocky Mountains.  

3. Identify site characteristics of high-severity burn patches that impact 
the likelihood of successful conifer recovery 30-years post-fire in the 
Northern Rocky Mountains. 

2. Methods 

2.1. Study area 

The study area was defined as the U.S. Northern Rocky Mountains, 
comprised of four, conifer-dominated U.S. Environmental Protection 
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Agency (EPA) Level-III Ecoregion groups: Canadian Rockies, Northern 
Rockies, Middle Rockies, and Idaho Batholith (Omernik and Griffith, 
2014). The four ecoregions encompass portions of Idaho, Montana, 
Wyoming, and Washington states (Fig. 1). At higher elevations, the 
forests of our study area are comprised of subalpine forests dominated 
by subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engel-
mannii) commonly associated with lodgepole pine (Pinus contorta) and 
whitebark pine (Pinus albicaulis). Lower to mid-elevation mixed-conifer 
forests are comprised primarily of Douglas-fir (Pseudotsuga menziesii) 
alongside western larch (Larix occidentalis), grand fir (Abies grandis var. 
idahoensis), ponderosa pine (Pinus ponderosa), limber pine (Pinus flex-
ilis), lodgepole pine, and quaking aspen (Populus tremuloides) (Dau-
benmire, 1943). 

2.2. Fire selection 

Candidate fires were identified within the Northern Rocky Moun-
tains using Monitoring Trends in Burn Severity (MTBS) fire perimeter 
datasets (Eidenshink et al., 2007). Fires occurring between 1988 and 
1991 were selected to assess regeneration over a 30-year post-fire period 
and ensure a sufficient record of pre-fire Landsat imagery. Fires were 
excluded from analysis if <25% of the burned area represented a 
coniferous forest type of interest using the USFS National Forest Type 
Group dataset (Ruefenacht et al., 2008). Relevant forest types included 
Douglas-fir, ponderosa pine, fir-spruce-mountain hemlock (hereafter fir- 
spruce), and lodgepole pine. The MTBS thematic burn severity dataset 
was utilized to select fire events with at least 200 ha of high-severity 
burning to facilitate relevant comparisons between patch sizes and 
forest types. After evaluating candidate fire suitability, ponderosa pine 
forests were excluded from further analysis with an insufficient area of 
high-severity fire identified (< 2000 ha). We likely found limited high- 
severity fire events within ponderosa pine due to historically lower- 
severity fire regimes (Schoennagel et al., 2004) and overall lower 
prevalence across the study region (Fig. 1). 

For each candidate fire, we excluded all areas within burn perimeters 
that would not exhibit patterns of natural regeneration due to man-
agement activity or reburning. Areas were removed from analysis if they 
showed evidence of notable human activity or silvicultural manage-
ment, such as road systems, buildings, or planting rows during visual 
inspection of high-resolution satellite imagery. Where applicable, fire 
perimeters were cross-referenced with the USFS Forest Activity Tracking 

System (FACTS) dataset of reforestation activities to remove areas of 
known planting or regeneration site preparation on federal lands. Areas 
of reburning were also excluded from analysis after comparison to the 
MTBS fire perimeter dataset. Fire selection criteria resulted in a final 
dataset of 34 high-severity wildfire complexes within the Northern 
Rocky Mountains, corresponding to 47 MTBS-defined events and 
890,000 ha of area burned. 

2.3. Identification of high-severity burn patches 

High-severity burn patches were identified within the 34 wildfire 
complexes using the Landsat-derived Relative differenced Normalized 
Burn Ratio (RdNBR) (Miller and Thode, 2007). RdNBR is a spectral burn 
severity index based on the Normalized Burn Ratio (NBR), which cal-
culates the ratio of wavelengths sensitive to the presence of vegetation 
and burned areas, near-infrared (NIR) and short-wave infrared (SWIR) 
(Eq. (1); Key and Benson, 2006; White et al., 1996). Burn severity is 
typically determined by differencing NBR values before and after a fire 
event, with larger differenced NBR (dNBR) values corresponding to 
more severe fire effects (Szpakowski and Jensen, 2019). RdNBR im-
proves upon dNBR by relativizing spectral values by pre-fire vegetation 
condition, improving the classification of burn severity across hetero-
geneous forests (Eq. (2); Cansler and McKenzie, 2012; Miller et al., 2009; 
Pelletier et al., 2021). Relativizing burn severity particularly improves 
the classification of areas burned at high-severity, as the measure more 
accurately corresponds to near-total vegetation loss (Miller and Thode, 
2007). Although MTBS data were used to initially identify high-severity 
fire events, the reliance on analyst interpretation to set dNBR thresholds 
is known to cause finer-scale issues when comparing multiple fires 
(Kolden et al., 2015; Sparks et al., 2014) or evaluating historic fire 
events where precise field data were often limited for classification 
(Miller and Thode, 2007). 

NBR =
NIR − SWIR
NIR + SWIR

(1)  

RdNBR =
NBRprefire − NBRpostfire

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒NBRprefire × 0.001

⃒
⃒

√ (2) 

Burn severity was calculated from RdNBR by adapting the approach 
described by Parks et al. (2018). Pre- and post-fire imagery were 

Fig. 1. Study area map of the 34 high-severity fire events used in our analysis, with fire extents highlighted in black. The dark gray boundary line indicates the 
combined area of the U.S. portion of the Environmental Protection Agency Level-III Ecoregion groups Canadian Rockies, Northern Rockies, Middle Rockies, and 
Idaho Batholith (Omernik and Griffith, 2014). Dominant forest types from the U.S. Forest Service National Forest Type Group Dataset are shown in shades of green 
(Ruefenacht et al., 2008). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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compiled from the mean annual composite of growing season (day 
152–273) Landsat 5 Thematic Mapper (TM) Surface Reflectance imag-
ery for one year before and after each fire event. The utilization of 
annual composites has been shown to improve burn severity classifica-
tion accuracy relative to individual scene selection by standardizing 
imagery, removing the necessity of analyst image selection, and 
reducing potential errors from reliance on a singular image (Parks et al., 
2018). Annual composites using imagery from one full year before and 
after a fire event perform well in western U.S. conifer forests by stan-
dardizing vegetation conditions between fires and accounting for 
delayed mortality. To address potential phenological differences be-
tween the pre- and post-fire imagery, we calculated a dNBR offset 
adjustment based on the mean dNBR value for all unburned pixels 
within a 180 m buffer around the fire perimeter. High-severity pixels 
were identified using RdNBR values >640, a threshold associated with 
95% or greater tree mortality in field-collected data from similar forests 
(Haffey et al., 2018; Hanson and Odion, 2014; Miller and Thode, 2007). 

Individual high-severity burn patches were delineated using the 
‘patchMorph’ tool from the ‘patchwoRk’ package (Girvetz and Greco, 
2007) in the R statistical program (R Core Team, 2021). The tool created 
patch polygons from contiguous high-severity burn pixels using 3-cell 
(90 m) separation thresholds for spurs and gaps between patches. 
Focal filtering has been shown to improve burn severity classification, 
reduce pixelation, and create more ecologically relevant patches (Collins 
and Stephens, 2010; Miller et al., 2012; Pelletier et al., 2021; Stevens 
et al., 2021). Patches were assigned to the majority forest type group 
present as defined by the USFS National Forest Type Group dataset 
(Ruefenacht et al., 2008). Any patches smaller than 2.25 ha, equivalent 
to 25 Landsat pixels at 30 m resolution, were excluded from our analysis. 
Through our selection process, we obtained a final dataset of 3850 high- 
severity burn patches, totaling nearly 300,000 ha, for analysis. 

2.4. Snow-cover Landsat imagery 

Snow-cover imagery was assembled from Google Earth Engine 
Landsat 5, 7, and 8 Surface Reflectance data to track conifer-specific 
vegetation recovery. Images were selected from a range of winter 
months (December–April) that would reliably be snow-covered and 
provide a temporal window that would ensure image availability given 
challenges posed by seasonal cloud cover. For each selected image, 
several spectral indices associated with vegetation, moisture, burn 
severity, and snow-cover were calculated: the Normalized Difference 
Vegetation Index (NDVI; Tucker, 1979), the Enhanced Vegetation Index 
(EVI; Huete et al., 2002), the Normalized Difference Water Index 
(NDWI; Gao, 1996), the Normalized Burn Ratio (NBR; García and 
Caselles, 1991), the Normalized Burn Ratio 2 (NBR2; Key and Benson, 
2006), the Normalized Difference Snow Index (NDSI; Hall and Riggs, 
2010), and the Normalized Difference Forested Snow Index (NDFSI; 
Wang et al., 2015). Pixels containing cloud, cloud shadow, or bodies of 
water were excluded utilizing Landsat's Quality Assurance (QA) bands. 

Although the study area is regularly snow-covered within the 
selected winter months, an image-masking process was applied to 
ensure pixels were representative of true snow-cover conditions. From 
the winter imagery, pixels were only retained for analysis if they had 
NDFSI or NDSI values >0.4, spectral thresholds that are strongly 
correlated with the presence of snow in forested and unforested areas, 
respectively (Hall et al., 1995; Wang et al., 2015). Spectral indices NDSI 
and NDFSI can identify the presence of snow by comparing the ratio of 
visible and NIR light, respectively, to SWIR radiation, which exhibits 
very low reflectance over snow. NDSI is used as the global standard for 
detecting snow coverage (Riggs et al., 2017), with improved perfor-
mance in conifer forests using NDFSI (Wang et al., 2015). Our meth-
odology enables an automated approach to flexibly select snow-covered 
imagery and effectively buffer against irregular annual snow coverage. 

Composite images were created for each winter season (Decem-
ber–April) by calculating the median pixel values of the masked Landsat 

images. Median image composites help minimize the influence of 
irregular snow-cover and the effect of potential spectral outliers. Our 
process of image selection and compositing resulted in an annual series 
of 13-band images, including six spectral bands and seven derived 
indices, for each fire event between 1984 and 2021. The collection of 
annual snow-cover image composites underwent a series of spectral 
analyses to characterize conifer recovery within high-severity burn 
patches over time (Fig. 2). 

2.5. Snow-cover NDVI trends 

To track post-fire conifer spectral recovery, patterns of snow-cover 
NDVI were evaluated through time. Snow-cover NDVI corresponds to 
coniferous vegetation by evaluating vegetation greenness when conifers 
represent the predominant spectral signal (Vanderhoof et al., 2021). 
Annual snow-cover NDVI values were calculated for each high-severity 
burn patch by averaging all respective pixel values. Each NDVI value 
was normalized to differenced NDVI (dNDVI) using the mean pre-fire 
snow-cover NDVI value for each individual burn patch to better eval-
uate the relative change in vegetation greenness. We applied a piecewise 
generalized linear regression using the ‘segmented’ package in R 
(Muggeo, 2008) to analyze trends in snow-cover dNDVI through time. 
Piecewise regression was employed to identify when a positive dNDVI 
slope occurred post-fire, signifying a detectable increase in vegetation 
greenness assumed to represent coniferous regeneration. The mean 
annual dNDVI values from all high-severity burn patches (n = 3850) 
were used by the model. The model was set to identify one breakpoint, 
using years post-fire as a predictor of snow-cover dNDVI for each forest 
type. Linear trends from the piecewise regressions were used to estimate 
the post-fire dNDVI recovery rates and timelines within each forest type. 
Recovery timelines were calculated as the estimated number of years to 
reach pre-fire snow-cover NDVI values, indicating that a high-severity 
burn patch had returned to initial conifer vegetation greenness values. 

2.6. Modeling conifer presence and absence 

A Random Forest classification model was developed using the R 
package ‘randomForest’ (Liaw and Wiener, 2002) to evaluate the spatial 
progression of conifer recolonization through time. The model was built 
to classify all pixels within the high-severity burn patches as either 
present or absent of conifer tree species at timepoints throughout the 30- 
year post-fire recovery period. Random Forest classifiers are non- 
parametric and work well with the classification of remotely sensed 
imagery as they do not rely on normally distributed data and are less 
susceptible to overfitting (Belgiu and Drăguţ, 2016). 

Model training points were distributed across high-severity patches, 
with 100 training points allocated to each of the 47 MTBS fire events (n 
= 4700). Training points were randomly assigned, with a minimum 
separation of 30 m, and equal stratification between north and south 
aspects and patch exterior and interior. Stratification by aspect was 
implemented to account for potential spectral differences from solar 
angle. Stratification by patch interior and exterior was applied to in-
crease the likelihood of the post-fire training data including more 
equivalent proportions of regenerating conifer presence and absence. 
Patch interior was conservatively defined as ≥150 m from patch edges, 
based on probable seed dispersal distances from surviving forest edges 
(Kemp et al., 2016). Training points were intersected with a 30 m fishnet 
grid aligned with the snow-cover Landsat pixels and visually categorized 
as either present or absent of conifers utilizing a combination of the most 
recently available 1 m resolution National Agricultural Imagery Pro-
gram (NAIP) and high-resolution (0.3–1 m) imagery available in Google 
Earth. Several late-season NAIP acquisition years provided at least one 
snow-cover image for most fire events, which offered useful compari-
sons of deciduous and coniferous vegetation. Pixel values were obtained 
for each training point from the average of three annual snow-cover 
Landsat composites (2018–2021) to ensure data availability and 
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account for potential variation in annual snow-cover. The model was 
trained with 2018–2021 Landsat imagery to align with the high- 
resolution imagery used to identify conifer cover and capture the wid-
est range of vegetation conditions across the landscape. The Random 
Forest model used the 13 snow-cover Landsat spectral bands from the 
training data points as predictors of conifer presence or absence. The 
number of predictors tried at each split (mtry) was set at three and the 
number of trees (ntrees) evaluated was 500. 

The model was independently validated using 20 validation points 
per MTBS event, randomly distributed with stratification by conifer 
presence and absence classes. A minimum distance of 30 m was enforced 
between points and from training points, to enable adequate validation 
points in smaller burned patches. The mean distance between validation 
and nearest-neighbor training points was 558 m. For each MTBS event, 
10 points were allocated between classes proportionally by predicted 
area with an additional 5 points allotted to each class to ensure a suf-
ficient minimum validation sample size (Olofsson et al., 2014). Valida-
tion points (n = 940) were visually classified as conifer present or absent 
using the same high-resolution imagery used to train the model, with a 
30 m fishnet grid overlaid. The performance of the classification was 
evaluated in a confusion matrix comparing the actual target classes 
against those predicted by the model. Additional post-model testing was 
conducted to assess the potential influence of spatial autocorrelation 
between training and validation datasets on model performance (Kat-
tenborn et al., 2022). First, we compared model accuracies for the full 
validation dataset against a subset where validation points within 100 m 
of a training point were withheld, a threshold distance regularly used to 
avoid spatial autocorrelation in similar studies (White et al., 2022). Chi- 
squared tests were used to evaluate differences in model performance for 
validation points that were nearer to or further from training data points 
using several distance benchmarks (60 m – 600 m). 

Misclassified validation points were leveraged to characterize the 
detectability of conifer regeneration within a Landsat pixel. For the 
subset of validation pixels that contained conifer trees but were 

incorrectly classified as conifer absent (n = 149), the proportion of 
conifer canopy cover was evaluated. These misclassified validation 
pixels indicate where the model is not performing well and can be used 
to identify a threshold of conifer cover that cannot be identified accu-
rately by our methodology. Canopy cover was calculated by counting 
the proportion of 1 m NAIP grid cells containing conifer trees that 
overlaid each misclassified 30 m Landsat pixel. 

After validation, the model was applied through time to characterize 
conifer recolonization of the high-severity burn area. The snow-cover 
Landsat imagery was aggregated into 10 timepoints by computing the 
mean value of the annual composites at three-year intervals. Consistent 
with the model training and validation data, three-year composites were 
used to ensure data availability and control for annual snow-cover 
variability. For each timestep, the model was used to predict conifer 
presence or absence, resulting in 10 conifer presence-absence rasters 
spanning the 30-year recovery period following each fire event. The 
proportion of conifer-present pixels was assessed for all high-severity 
burn patches at each analysis timestep. 

2.7. Identifying characteristics of recovery 

Factors associated with an increased likelihood of successful conifer 
recovery 30 years post-fire were identified from high-severity burn 
patch characteristics. Recovery success was defined as a high-severity 
patch reaching 80% conifer recolonization, a threshold corresponding 
to near-intact forest structure (Viana-Soto et al., 2022; White et al., 
2017). A generalized linear logistic regression model was created using 
the R package ‘rms’ (Harrell Jr, 2013) to predict patch recovery. A suite 
of predictor variables was calculated for all high-severity patches to 
characterize significant (p < 0.05) biological and environmental con-
trols on forest recovery. Forest type was used as a categorical predictor 
to account for inherent differences in recovery timelines among forest 
ecosystems. Patch area and area-to-perimeter ratio were included to 
describe the importance of patch size and configuration. Climate water 

Fig. 2. Diagram showing the methodological workflow followed by our study design. Initial data inputs, processing steps, and final study results are documented. 
DOY: day of year, NAIP: National Agriculture Imagery Program, USFS: U.S. Forest Service, USGS: U.S. Geological Survey, NBR: Normalized Burn Ratio, RdNBR: 
Relative differenced NBR, NDVI: Normalized Difference Vegetation Index, EVI: Enhanced Vegetation Index, NDFSI: Normalized Difference Forested Snow Index, 
NDSI: Normalized Difference Snow Index, NDWI: Normalized Difference Water Index. 
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deficit (DEF) was used to characterize evaporative demand, calculated 
as the mean patch value from TerraClimate data (Abatzoglou et al., 
2018) in a 3-year window (1985–1987) before the fire events occurred. 
The influence of topographic variables was assessed from the mean 
patch slope, cosine-corrected aspect, and elevation derived from the 
‘elevatr’ R package (Hollister et al., 2021). Cosine-correction of aspect 
provides an estimate of ‘northness’, with values close to 1 representing 
north-facing aspects, and values close to − 1 representing south-facing 
aspects. Odds-ratios were calculated for all predictors to assess the 
relative impact of each on conifer recovery likelihood. The change in 
odds-ratios across the interquartile range of each predictor was also 
determined to provide more relevant comparisons between variables. 

3. Results 

3.1. High-severity burn patch distributions 

Following the high-severity burn patch identification process, a final 
dataset of 3850 high-severity burn patches were identified (Table 1). 
The burn patch dataset represents 34 high-severity wildfire complexes, 
with varying distributions of patch sizes and forest composition. Over 
51% of the high-severity burn patches were located within lodgepole 
pine forests, with 37% and 11% in the fir-spruce and Douglas-fir forest 
types, respectively. By area, lodgepole pine represented 72%, fir-spruce 
22%, and Douglas-fir 6%. Across all forest types, relatively small (<50 
ha) patches accounted for the majority (87%) of the total number of 
patches, yet only represented 11% of the total area burned at high- 
severity. Conversely, a few very large (>1000 ha) patches represented 
a disproportionate amount (57%) of the high-severity burn area. 
Douglas-fir and fir-spruce had more similar distributions of patch 
number and area between the size classes, whereas lodgepole pine had a 
much larger proportion of area (69%) within the largest (>1000 ha) size 
class. 

3.2. Snow-cover dNDVI recovery and detection 

The piecewise generalized linear regression of post-fire snow-cover 
dNDVI had adjusted R2 values of 0.96 and 0.90 for Douglas-fir and 
lodgepole pine respectively, whereas fir-spruce showed greater vari-
ability along the trendline with an adjusted R2 of 0.58 (Fig. 3). All three 
forest types saw similar reductions to snow-cover dNDVI post-fire, with 
model intercepts between − 0.162 and − 0.193. Initial snow-cover 
dNDVI slopes were slightly negative for all forest types before the 
breakpoint, varying between − 0.0032 and − 0.0013, although the slope 
was only significant (p < 0.05) for fir-spruce. The segmented model 
breakpoints (hereafter detection points) differed by forest type, at 11.5 
years for Douglas-fir, 14.6 years for lodgepole pine, and 19.4 years for 
fir-spruce. Post-detection slopes were all significantly positive (p < 
0.05), and greatest in lodgepole pine at 0.0124, followed by 0.0082 in 
Douglas-fir, and 0.0076 in fir-spruce. If future dNDVI trends continue to 
follow the linear post-detection slope, the estimated recovery time to 
pre-fire snow-cover NDVI values would be 29.5 years in lodgepole pine, 
36.9 years in Douglas-fir, and 48.7 years in fir-spruce. 

3.3. Conifer presence-absence model performance and recovery trends 

The conifer presence-absence Random Forest model had an initial 
estimated out-of-bag error rate of 12.0%. The variables of highest 
importance to the model were the spectral indices NDVI, NDWI, NBR2, 
and NBR. Accuracy assessment through independent validation showed 
an overall accuracy rate of 83.2%, with 98.8% accuracy at classifying 
conifer presence and 58.9% accuracy at classifying conifer absence 
(Table 2). We found no evidence to indicate that spatial autocorrelation 
influenced model accuracy, with similar overall performance (82.4%) 
excluding validation points within 100 m of a training point. Further, 
chi-squared tests showed that model performance was insignificantly 
different between all tested training point nearest-neighbor distance 
thresholds. 

For misclassified validation pixels, where conifer trees were present 
in the reference class but were incorrectly classified as absent, we found 
that the majority (72%) of the Landsat pixels had <10% coniferous tree 
cover (Fig. 4). A forest canopy cover of 10% corresponds to the defini-
tions of ‘forested’ used by the USFS FIA and United Nations Food and 
Agriculture Organization (Gray et al., 2012; Food and Agriculture Or-
ganization of the United Nations, 2020), indicating that the majority of 
false negatives occurred where conifer trees were present within an 
unforested condition. The overall difference in class-level accuracies we 
documented indicates that our classification of conifer presence may be 
more conservative than what is present on the landscape. 

Conifer recolonization was characterized by tracking the proportion 
of modeled conifer-present pixels over time for all high-severity burn 
patches (Fig. 5). Thirty years post-fire, conifer trees had recolonized 
65% of the total high-severity area burned (Fig. 6). The proportion of 
total area occupied by conifer trees varied by forest type: 72% of 
lodgepole pine, 77% of Douglas-fir, and 44% of fir-spruce forests. 

The distribution of conifer recolonization across each of the 3850 
high-severity burn patches was also evaluated over time. Similar refor-
estation trajectories were observed for Douglas-fir and lodgepole pine 
patches, with median proportions of conifer occupancy after 30 years of 
91.1% and 100%, respectively (Fig. 5). Lodgepole pine exhibited more 
consistent conifer recovery across all patches, with an interquartile 
range of proportional area occupied by conifer trees of 9.8% compared 
to 46.3% in Douglas-fir. In contrast, fir-spruce patches displayed a 
slower rate of conifer recolonization, achieving a median conifer occu-
pancy of 41.3% after 30 years, and demonstrated greater variation in 
recovery across patches, with an interquartile range of 62.3%. 

3.4. Evaluation of patch recovery 

Odds-ratios of patch characteristics associated with conifer recovery 
were identified (Table 3). Forest type had a significant effect (p < 0.001) 
on determining conifer recovery, with lodgepole pine and Douglas-fir 
patches, respectively, associated with a 6.0- and 2.0-times greater like-
lihood of patch recovery relative to fir-spruce. Lodgepole pine also had a 
3.0-times greater likelihood of recovery compared to Douglas-fir. 
Increasing patch area-to-perimeter ratio, climate water deficit, eleva-
tion, and slope, along with decreasing aspect northness were signifi-
cantly associated (p < 0.001) with lower likelihoods of conifer recovery. 
Patch area was not found to have a significant effect on conifer recovery 
(p > 0.05). 

Table 1 
Distribution of the number and area of high-severity burn patches evaluated within the study area. Patches are arranged by U.S. Forest Service forest type groups 
Douglas-fir, fir-spruce, and lodgepole pine and by patch size class.   

<50 ha 50–100 ha 100–500 ha 500–1000 ha >1000 ha 

Forest Type Group Area (ha) n Area (ha) n Area (ha) n Area (ha) n Area (ha) n 

Douglas-fir 3633 387 1778 25 4891 21 1457 2 5886 3 
Fir-spruce 11308 1246 4593 67 17857 82 12422 16 16225 7 
Lodgepole pine 15509 1725 7756 112 22590 109 16768 24 139421 23  
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To demonstrate the relative performance of each continuous pre-
dictor variable within our study area, we compared the relative change 
in odds ratios across the interquartile range for each variable. Topo-
graphic variables had the largest odds-ratio magnitude across the 
interquartile range of the data, with a 64% and 74% reduction in the 
likelihood of conifer recovery as elevation and slope increased, respec-
tively, and a 59% decrease going from northern to southern aspects. 
Other predictors showed a 17% reduction in recovery odds across 
climate water deficit and 16% reduction in recovery odds across area-to- 
perimeter ratio. 

4. Discussion 

4.1. Snow-cover remote sensing performance and application 

Our study supports the capability of snow-cover NDVI trends to 
assess post-fire conifer recovery, consistent with previous research 
(Vanderhoof et al., 2021; Vanderhoof and Hawbaker, 2018). Piecewise 

regression of post-fire dNDVI furthered prior efforts, estimating snow- 
cover Landsat conifer detection limits (~10% canopy cover) and post- 
fire conifer recovery timelines (30–49 years post-fire) within high- 
severity burn patches. Furthermore, snow-cover imagery was proven 
to be an effective technique to spatially identify the presence of regen-
erating coniferous tree cover, with over 98% classification accuracy. 
Although our methods were ineffective at detecting low conifer cover, 
this implies that our classification is more analogous to forested levels of 
coniferous vegetation, rather than the presence of individual conifer 
trees. Other studies have similarly employed a 10% cover threshold to 
evaluate forest recovery (Bartels et al., 2016; White et al., 2018; Zhao 
et al., 2016) and found similar thresholds of vegetation cover detect-
ability within Landsat pixels (Negrón-Juárez et al., 2011; Sankey and 
Glenn, 2011; Williams and Raymond, 2002). Mapping conifer-specific 
forest cover through a pixel-based approach is a powerful tool to char-
acterize post-fire vegetation recovery. Alongside snow-cover NDVI, the 
mapped extent of conifer cover can be used to identify areas of regen-
eration failure and directly inform forest management decision-making 
following high-severity wildfire. Spatially representing conifer regen-
eration has the potential to inform other aspects of recovery, such as 
predicting hydrological responses (Niemeyer et al., 2020; O'Donnell 
et al., 2018, evaluating wildlife habitat suitability (Ackers et al., 2015; 
Nelson and Buech, 1996), and estimating carbon sequestration (Kashian 
et al., 2006; Meigs et al., 2009). Understanding post-fire stand devel-
opment is crucial to address challenges posed by the increasing occur-
rence and extent of high-severity wildfires in the western United States. 
There remains a need for long-term research on conifer recovery pat-
terns, particularly in fire-prone ecosystems with limited field studies or 
at an increased risk of regeneration failure. 

Although snow-cover Landsat was proven to be successful for our 
applications, we identified potential limitations and opportunities for 

Fig. 3. Piecewise generalized linear regression of snow-cover differenced Normalized Difference Vegetation Index (dNDVI) through time, comparing Douglas-fir, 
lodgepole pine, and fir-spruce forest type groups. Each point represents the mean snow-cover dNDVI value across all high-severity burn patches for each forest 
type. Snow-cover NDVI values were relativized by pre-fire vegetation condition for all high-severity burn patches and plotted through time relative to the fire 
event year. 

Table 2 
Conifer presence-absence Random Forest model error matrix from independent 
validation expressed in terms of proportion of total area represented by each 
class. Total (Wi) represents the mapped area proportions of each class. Ui and Pi 
characterize the user's and producer's accuracy of each class, respectively.  

Map 
Classification 

Reference Class  

Conifer 
Presence 

Conifer 
Absence 

Total 
(Wi) 

Ui Pi 

Conifer 
Presence 

0.650 0.008 0.658 98.8% 77.6% 

Conifer Absence 0.140 0.202 0.342 58.9% 96.8%  
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future development. Modeling conifer presence post-fire may be hin-
dered in study systems with low densities of conifer trees or irregular 
winter snow-cover. Higher resolution satellites may reduce the delay 
before regeneration becomes detectable or improve performance in low 
conifer cover systems by enabling more precise aerial estimation of 
conifer presence, particularly if the spatial resolution allows a single tree 
to correspond to >10% pixel coverage. Incorporating other remotely- 
sensed data sources, such as LiDAR, additional spectral bands, or addi-
tional imagery timepoints could also feasibly enhance the ability to 
detect conifer vegetation presence. Considering local vegetation 
composition and snow-cover extent, timing, and depth during the image 
selection process may also improve conifer detection by having a higher 
proportion of vegetation visible. Study areas with sparse winter snow- 
coverage could explore integrating leaf-off imagery to separate conif-
erous vegetation signals (Kiel and Turner, 2022; Townsend and Walsh, 
2001). Designing region-specific modeling approaches, with unique 
image selection processes dependent on winter seasonality and vegeta-
tion composition, may be a desirable approach. Where these methodo-
logical adjustments are unable to sufficiently increase model 

performance, considering the overall change in snow-cover NDVI, rather 
than explicitly mapping conifer cover, may be a preferable alternative. 

Unaided, our methods cannot evaluate the recovery of deciduous 
conifer (i.e., Larix spp) or broadleaf tree species, or identify composi-
tional shifts in coniferous species dominance. Combining growing- 
season and snow-cover imagery may offer opportunities to assess re-
covery for both evergreen conifer and deciduous vegetation (Vander-
hoof et al., 2021). Future studies using snow-cover imagery could 
incorporate other datasets to evaluate forest structural or compositional 
recovery. Prior research has successfully integrated LiDAR with Landsat 
imagery to measure both spectral and structural vegetation recovery 
(Bolton et al., 2015; McCarley et al., 2017; Szpakowski and Jensen, 
2019; Viana-Soto et al., 2022; Wulder et al., 2009). Others have paired 
moderate resolution imagery with field collected data, such as FIA, to 
identify forest composition across broad spatial scales (Obata et al., 
2021; Ruefenacht et al., 2008; Song et al., 2007; Thapa et al., 2020; 
Tinkham et al., 2018). 

Fig. 4. Examples of (1) true-colour snow-cover Landsat imagery, (2) high-resolution satellite imagery used to develop conifer presence-absence model training data, 
and (3) overlayed classified conifer presence-absence Random Forest model output with predicted conifer presence in green and absence in red for three levels of 
conifer tree cover (a-c). (a) illustrates low (<10%) conifer cover and subsequent model misclassification as conifer absence. (b) represents low, but detectable levels 
of conifer cover and (c) shows high levels of conifer cover, both of which are correctly classified by the model as conifer presence. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.2. Patterns of snow-cover NDVI 

The patterns of snow-cover dNDVI show progression toward forest 
recovery across high-severity burn patches, relaying the amount of 
vegetation greenness relative to the initial forest stand conditions. In-
creases in the proportion of conifer recolonization we documented 
generally align with the trends observed in snow-cover dNDVI. The 
variation in dNDVI between the three forest types through time aligns 
with the mean patch recolonization through time. Lodgepole pine 
regeneration typically occurs in a singular pulse in the year following a 
fire event, with serotinous cones releasing seed en masse, followed by 
relatively rapid seedling growth. Conversely, Douglas-fir, Engelmann- 
spruce, and subalpine fir rely on seed dispersal from surviving parent 

trees, leading to more prolonged seedling establishment peaking 4–6 
years post-fire (Harvey et al., 2016c). Seed dispersal is generally con-
strained to 100 m within surviving parent trees in Northern Rocky 
Mountain forests (Gill et al., 2021; Kemp et al., 2016), potentially 
requiring several successive generations of seedling recruitment, 
growth, and dispersal to recolonize isolated patch interiors. 

Slightly negative snow-cover dNDVI slopes were observed in the first 
11–19 years post-fire, indicating a continued loss of conifer vegetation 
greenness across forest types. Although most trees are killed directly by 
wildfire, mortality may continue for several years from increased abiotic 
stressors, insect infestations, or fire injuries (Hood and Varner, 2020). 
Fir-spruce may have seen a longer period of negative slope due to 
increased post-fire mortality from greater sensitivity to fire-injury 

Fig. 5. Examples of the conifer presence-absence modeling for three high-severity burn patches, representing minimal (1), moderate (2), and full (3) conifer recovery 
scenarios. Panel a shows Landsat 5 Thematic Mapper imagery using a false colour composite (bands 7, 4, 3) immediately following each fire event and the extent of 
each high-severity burn patch. Panels b-d show mapped conifer presence in green at three points along the timeseries, associated with year 10, 20, and 30 post-fire, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Boxplot distributions of the proportion of conifer occupancy across all high-severity burn patches at 3-year analysis time timepoints for each forest type 
group. Dotted trendlines represent the cumulative distribution of the proportion of area occupied by conifer trees across all high-severity burn patches. 

C. Menick et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 305 (2024) 114114

10

(DeNitto et al., 2000) or greater snag longevity in thin-barked Engel-
mann spruce and subalpine fir (Everett et al., 1999; Russell et al., 2006). 
Variation in snow-cover dNDVI detection points, when conifer vegeta-
tion greenness begins to increase, likely results from differing stand 
development timelines and snow depth. Although detection lags are 
common in approaches to separate vegetation types (Kiel and Turner, 
2022), accounting for the multi-year lag between seedling establishment 
and detection is important when interpreting vegetation recovery using 
snow cover imagery. Greater accumulated snow depth and slower tree 
growth rates likely lengthen the time required for conifer seedlings to 
reach a detectable height above the snowpack by obscuring visible NDVI 
signals. Fir-spruce likely had the longest time to dNDVI detection, with 
prolonged seedling establishment and slow growth rates (Ferguson and 
Carlson, 2010) paired with greater snow depths in higher elevation 
forests (Grundstein and Mote, 2010). Detection occurred sooner within 
lodgepole pine and Douglas-fir, which are typically found at lower ele-
vations with relatively faster growth rates (Ferguson and Carlson, 2010). 

The recovery timelines we estimated from snow-cover NDVI are 
longer than those reported in similar studies evaluating growing-season 
spectral recovery (Bright et al., 2019). Previous application of snow- 
cover imagery has found similar discrepancies, showing that growing- 
season NDVI estimated post-fire recovery nearly five times sooner 
than with snow-cover NDVI over a wide range of burn severities and 
forest types (Vanderhoof et al., 2021). The non-specific nature of 
growing-season NDVI hinders the evaluation of early post-fire regrowth, 
which tends to be largely dominated by deciduous and herbaceous 
cover. Reduced conifer establishment may be associated with competi-
tion from early-seral aspen dominance (St. Clair et al., 2013) or 
compensatory increases in shrub and herbaceous biomass (Kiel and 
Turner, 2022), further obscuring recovery trends. Mischaracterizing or 
overestimating forest recovery presents challenges to direct manage-
ment efforts, evaluate wildfire impacts, monitor aboveground carbon 
storage, and identify areas of landscape conversion to non-forest vege-
tation. Techniques to spectrally separate vegetation types provide an 
opportunity to address these challenges and better characterize post-fire 
recovery across conifer-dominated forest ecosystems. 

4.3. Characteristics of conifer recovery and implications for resilience 

Although our analyses documented general patterns of conifer re-
covery following high-severity wildfires in the Northern Rocky Moun-
tains, we found that 35% of our study area was not recolonized by 
coniferous vegetation after 30 years. Areas of persistent regeneration 
failure are at risk of conversion to non-forest vegetation communities 
and indicate reduced resilience to high-severity wildfire. Variables 
associated with conifer regeneration success can be used to identify lo-
cations within high-severity events that may be at greater risk of 

regeneration failure, appropriately direct management efforts, and 
evaluate consequences of shifting wildfire regimes. Although our anal-
ysis considered multiple fire events, the relatively distinct time period of 
the fires evaluated should be considered in interpreting results. 

Fir-spruce forests had relatively poor likelihoods of conifer recovery 
relative to Douglas-fir and lodgepole pine, aligning with the snow-cover 
dNDVI trends and modeled proportions of conifer recolonization. Slower 
establishment, growth, and seed production constrain fir-spruce recov-
ery, limiting the ability of conifer trees to effectively recolonize high- 
severity burn patches within 30 years. Our characterization of pro-
tracted post-fire recovery within fir-spruce forests is supported by other 
field-based assessments of post-fire regeneration (Harvey et al., 2016a; 
Stevens-Rumann et al., 2018). Historically, slower post-fire recovery 
within fir-spruce forests has maintained resilience with a fire regime of 
infrequent (>200 years), high-severity events (Schoennagel et al., 
2004). Increasing wildfire extent and shortening return intervals within 
subalpine forests may, however, pose challenges for future forest re-
covery (Gill et al., 2021; Harvey et al., 2016b; Stevens-Rumann and 
Morgan, 2016). Douglas-fir and lodgepole pine exhibited comparably 
greater recovery, with remaining unforested areas concentrated within a 
few, larger patches, aligning with prior field studies (Kiel and Turner, 
2022). Areas of regeneration failure were particularly concentrated 
within lodgepole pine forests, where the median patch is 100% forested, 
yet 28% of the total area is absent of conifer trees. Although recovery 
was comparably greater for Douglas-fir and lodgepole pine, large areas 
of regeneration failure are ecologically significant and consequential to 
post-fire management efforts. 

Characteristics of high-severity burn patches that limited seed 
dispersal or challenged seedling success were also associated with 
reduced likelihoods of conifer recovery. High-severity burn patches 
located in drier environments and topographic extremes were associated 
with decreasing likelihoods of conifer recovery. Topography and climate 
have been shown to impact recovery by creating site conditions adverse 
to seedling success or limiting seed dispersal capacity (Harvey et al., 
2016a; Kemp et al., 2019; Kiel and Turner, 2022; Stevens-Rumann et al., 
2018). Decreased conifer recovery was also associated with larger patch 
area-to-perimeter ratios. Patch area-to-perimeter ratios provide more 
information than patch size alone by considering the spatial arrange-
ment of the burned area. Patches with high area-to-perimeter ratios (i.e., 
circular) may inhibit seed dispersal by having a smaller proportion of 
burned area near a patch edge and surviving parent trees. The influence 
of patch area-to-perimeter ratios indicates that the negative impact of 
increasing patch size on forest recovery may be somewhat mitigated by 
spatial configurations that support seed dispersal. The importance of 
patch configuration aligns with prior field-based research showing that 
landscape heterogeneity has been important to maintain post-fire 
resilience in the Northern Rocky Mountains (Clark-Wolf et al., 2022; 

Table 3 
Odds-ratios derived from the generalized linear logistic regression model of conifer recovery. Odds-ratios greater than one indicate an increased likelihood of high- 
severity burn patch achieving 80% conifer recolonization 30 years post-fire, where values less than one indicate a reduced likelihood of recovery. Categorical pre-
dictors show the relative difference in odds between each pairwise comparison, with the same odds reported for both ratios. Continuous predictors show the odds-ratio 
as the change in recovery likelihood for a one unit increase of that predictor. The interquartile range (IQR) odds-ratio shows the change in odds of conifer recovery 
across the interquartile range of that variable to provide more relevant comparisons between predictors across the study area.  

Predictors Effects 

Type Variable Variable IQR Odds-Ratio Odds-Ratio 
95% CI 

IQR Odds-Ratio IQR Odds-Ratio 95% CI p 

Forest Type Douglas-Fir - Fir-Spruce – 1.999 [1.432, 2.791] 1.999 [1.432, 2.791] <0.0001 
Forest Type Lodgepole Pine - Fir-Spruce – 6.002 [4.967, 7.252] 6.002 [4.967, 7.252] <0.0001 
Forest Type Lodgepole Pine - Douglas-Fir – 3.002 [2.167, 4.158] 3.002 [2.167, 4.158] <0.0001 
Climate Climatic Water Deficit (DEF; mm) 17.77–22.02 0.958 [0.940, 0.976] 0.833 [0.769, 0.902] <0.001 
Patch Patch Area (ha) 3.42–18.02 0.999 [0.999, 1.000] 0.999 [0.997, 1.001] >0.05 
Patch Area to Perimeter Ratio (ha/m) 30.27–51.64 0.992 [0.988, 0.995] 0.838 [0.774, 0.908] <0.0001 
Topography Elevation (m) 2267-2596 0.997 [0.996, 0.997] 0.356 [0.313, 0.406] <0.0001 
Topography Slope (degrees) 6.48–19.05 0.899 [0.887, 0.911] 0.263 [0.225, 0.309] <0.0001 
Topography Aspect (cos(radians)) − 0.46-0.49 1.635 [1.408, 1.899] 1.589 [1.379, 1.829] <0.0001  
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Harvey et al., 2016b; Kemp et al., 2016; Kiel and Turner, 2022) and 
specifically supported post-fire recovery in fires used in our analysis 
(Schoennagel et al., 2008; Turner et al., 1999). With anticipated declines 
in burn severity heterogeneity in the Northern Rockies (Harvey et al., 
2016b) and shifting climate conditions (Abatzoglou and Williams, 
2016), our findings suggest that forest resilience may be eroded by 
increased prevalence of high-severity wildfires. 

5. Conclusions 

Our study demonstrates that snow-cover Landsat imagery can be 
successfully utilized to evaluate conifer-specific vegetation recovery 
following high-severity fire. Consistent with previous research, we 
found that snow-cover NDVI is an effective method to track post-fire 
conifer regeneration at a landscape scale, produce ecologically consis-
tent results, and avoid confusion with herbaceous vegetation that can 
occur when using growing-season imagery. Our study is the first to 
outline snow-cover Landsat detectability limits and utilize remotely- 
sensed snow-cover imagery to spatially model the presence of conifer 
regeneration. >98% detection accuracy was achieved for identifying 
conifer regeneration presence in a Landsat pixel, with the preponder-
ance of misclassified conifer-absent pixels having <10% conifer cover. 
Such high model reliability suggests that snow-cover remote sensing can 
be used to provide a clearer picture of post-fire regeneration dynamics 
and better evaluate post-fire forest recovery. Applying our methodolo-
gies to a wide range of fire events could provide valuable insight into the 
long-term trends and variations in post-fire conifer regeneration across 
fire-prone forest ecosystems. 

We were able to employ snow-cover remote sensing to model 
conifer-specific vegetation recovery for nearly 300,000 ha burned at 
high-severity. By focusing on conifer-specific forest regrowth, we gain a 
clearer understanding of post-fire recovery dynamics and can better 
evaluate strategies for addressing the ecological implications of high- 
severity fire. Our research has constructed a more detailed picture of 
long-term post-fire forest recovery for lodgepole pine, Douglas-fir, and 
fir-spruce forests in the Northern Rocky Mountains, demonstrating dif-
ferences in the rate and pattern of conifer recolonization. We identified 
patch-level characteristics associated with reduced likelihoods of conifer 
recovery, underlining the importance of environmental conditions and 
heterogeneity in supporting forest resilience. Understanding conifer 
recovery patterns and controls following high-severity wildfires is 
crucial for addressing the challenges posed by increasing wildfire 
occurrence, extent, and severity. 
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Pickell, P.D., Holopainen, M., Hyyppä, J., Vastaranta, M., 2018. Confirmation of 
post-harvest spectral recovery from Landsat time series using measures of forest 
cover and height derived from airborne laser scanning data. Remote Sens. Environ. 
216, 262–275. https://doi.org/10.1016/j.rse.2018.07.004. 

C. Menick et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0375
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0375
https://doi.org/10.1002/hyp.13665
https://doi.org/10.3390/rs13020218
https://doi.org/10.3390/rs13020218
https://doi.org/10.1002/eap.1746
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1007/s00267-014-0364-1
https://doi.org/10.1016/j.foreco.2017.09.005
https://doi.org/10.1016/j.foreco.2017.09.005
https://doi.org/10.1029/2020GL089858
https://doi.org/10.3390/rs10060879
https://doi.org/10.3390/rs10060879
https://doi.org/10.1002/ecs2.2651
https://doi.org/10.3390/rs13101935
https://doi.org/10.3390/rs13101935
https://doi.org/10.1071/WF15039
https://doi.org/10.1016/j.foreco.2017.03.035
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0440
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0440
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0445
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0445
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0445
https://doi.org/10.1002/ecs2.1543
https://doi.org/10.14358/PERS.74.11.1379
https://doi.org/10.14358/PERS.74.11.1379
https://doi.org/10.1016/j.foreco.2006.05.068
https://doi.org/10.1016/j.foreco.2006.05.068
https://doi.org/10.14358/PERS.77.12.1241
https://doi.org/10.1641/0006-3568(2004)054[0661:tioffa]2.0.co;2
https://doi.org/10.1641/0006-3568(2004)054[0661:tioffa]2.0.co;2
https://doi.org/10.1071/WF07146
https://doi.org/10.1016/j.earscirev.2005.10.006
https://doi.org/10.1016/j.earscirev.2005.10.006
https://doi.org/10.1016/j.foreco.2013.12.014
https://doi.org/10.1016/j.foreco.2013.12.014
https://doi.org/10.1016/j.rse.2006.08.008
https://doi.org/10.1016/j.rse.2006.08.008
https://doi.org/10.1071/wf13206
https://doi.org/10.1071/wf13206
https://doi.org/10.1016/j.foreco.2013.02.026
https://doi.org/10.1111/ddi.13281
https://doi.org/10.1111/ddi.13281
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0510
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0510
https://doi.org/10.1890/15-1521.1
https://doi.org/10.1890/15-1521.1
https://doi.org/10.1111/ele.12889
https://doi.org/10.1111/ele.12889
https://doi.org/10.3390/rs11222638
https://doi.org/10.1080/01431161.2019.1711245
https://doi.org/10.1080/01431161.2019.1711245
https://doi.org/10.6028/NIST.SP.1215
https://doi.org/10.1139/cjfr-2018-0196
https://doi.org/10.1023/A:1013999513172
https://doi.org/10.1023/A:1013999513172
https://doi.org/10.1126/science.242.4886.1640
https://doi.org/10.1126/science.242.4886.1640
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1071/wf99003
https://doi.org/10.1071/wf99003
https://doi.org/10.1073/pnas.1902841116
https://doi.org/10.1016/j.rse.2003.12.015
https://doi.org/10.1071/WF18075
https://doi.org/10.1071/WF18075
https://doi.org/10.1002/eap.2237
https://doi.org/10.1002/eap.2237
https://doi.org/10.1016/j.jag.2022.102754
https://doi.org/10.1016/j.jag.2022.102754
https://doi.org/10.1007/s10980-019-00832-9
https://doi.org/10.1007/s10980-019-00832-9
https://doi.org/10.3390/rs71215882
https://doi.org/10.3390/rs71215882
https://doi.org/10.1016/j.jag.2022.102704
https://doi.org/10.1126/science.1128834
https://doi.org/10.1073/pnas.1110199108
https://doi.org/10.1073/pnas.1110199108
https://doi.org/10.1071/WF9960125
https://doi.org/10.1071/WF9960125
https://doi.org/10.1016/j.rse.2017.03.035
https://doi.org/10.1016/j.rse.2017.03.035
https://doi.org/10.1016/j.rse.2018.07.004


Remote Sensing of Environment 305 (2024) 114114

14

White, J.C., Hermosilla, T., Wulder, M.A., Coops, N.C., 2022. Mapping, validating, and 
interpreting spatio-temporal trends in post-disturbance forest recovery. Remote 
Sens. Environ. 271, 112904 https://doi.org/10.1016/j.rse.2022.113195. 

Williams, A.P., Raymond, E., 2002. Estimation of leafy spurge cover from hyperspectral 
imagery using mixture tuned matched filtering. Remote Sens. Environ. 82, 446–456. 
https://doi.org/10.1016/S0034-4257(02)00061-5. 

Wolter, P.T., Mladenoff, D.J., Host, G.E., Crow, T.R., 1995. Improved forest classification 
in the northern Lake states using multi-temporal Landsat imagery. Remote Sens. 
Environ. 210, 193–207. 

Wolter, P.T., Townsend, P.A., Sturtevant, B.R., Kingdon, C.C., 2008. Remote sensing of 
the distribution and abundance of host species for spruce budworm in northern 
Minnesota and Ontario. Remote Sens. Environ. 112 (10), 3971–3982. https://doi. 
org/10.1016/j.rse.2008.07.005. 

Wu, Z., Middleton, B., Hetzler, R., Vogel, J., Dye, D., 2015. Vegetation burn severity 
mapping using Landsat-8 and WorldView-2. Photogramm. Eng. Remote. Sens. 81 
(2), 143–154. https://doi.org/10.14358/pers.81.2.143. 

Wulder, M.A., White, J.C., Alvarez, F., Han, T., Rogan, J., Hawkes, B., 2009. 
Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. 
Remote Sens. Environ. 113 (7), 1540–1555. https://doi.org/10.1016/j. 
rse.2009.03.004. 

Zhao, F.R., Meng, R., Huang, C., Zhao, M., Zhao, F.A., Gong, P., Yu, L., Zhu, Z., 2016. 
Long-term post-disturbance forest recovery in the greater Yellowstone ecosystem 
analyzed using Landsat time series stack. Remote Sens. 8 (11) https://doi.org/ 
10.3390/rs8110898. 

C. Menick et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.rse.2022.113195
https://doi.org/10.1016/S0034-4257(02)00061-5
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0640
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0640
http://refhub.elsevier.com/S0034-4257(24)00125-1/rf0640
https://doi.org/10.1016/j.rse.2008.07.005
https://doi.org/10.1016/j.rse.2008.07.005
https://doi.org/10.14358/pers.81.2.143
https://doi.org/10.1016/j.rse.2009.03.004
https://doi.org/10.1016/j.rse.2009.03.004
https://doi.org/10.3390/rs8110898
https://doi.org/10.3390/rs8110898

	Snow-cover remote sensing of conifer tree recovery in high-severity burn patches
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 Fire selection
	2.3 Identification of high-severity burn patches
	2.4 Snow-cover Landsat imagery
	2.5 Snow-cover NDVI trends
	2.6 Modeling conifer presence and absence
	2.7 Identifying characteristics of recovery

	3 Results
	3.1 High-severity burn patch distributions
	3.2 Snow-cover dNDVI recovery and detection
	3.3 Conifer presence-absence model performance and recovery trends
	3.4 Evaluation of patch recovery

	4 Discussion
	4.1 Snow-cover remote sensing performance and application
	4.2 Patterns of snow-cover NDVI
	4.3 Characteristics of conifer recovery and implications for resilience

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


