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Anthropogenic climate change is altering the state of worldwide fire regimes, includ-
ing by increasing the number of days per year when vegetation is dry enough to burn. 
Indices representing the percent moisture content of dead fine fuels as derived from 
meteorological data have been used to assess geographic patterns and temporal trends 
in vegetation flammability. To date, this approach has assumed a single flammability 
threshold, typically between 8 and 12%, controlling fire potential regardless of the 
vegetation type or climate domain. Here we use remotely sensed burnt area products 
and a common fire weather index calculated from global meteorological reanalysis 
data to identify and describe geographic variation in fuel moisture as a flammability 
threshold. This geospatial analysis identified a wide range of flammability thresholds 
associated with fire activity across 772 ecoregions, often well above or below the com-
monly used range of values. Many boreal and temperate forests, for example, can ignite 
and sustain wildfires with higher estimated fuel moisture than previously identified; 
Mediterranean forests, in contrast, tend to sustain fires with consistently low estimated 
fuel moisture. Statistical modelling showed that flammability thresholds derived from 
burnt area are primarily driven by climatological variables, particularly precipitation 
and temperature. Our analysis also identified complex associations between vegetation 
structure, fuel types, and climatic conditions highlighting the complexity in vegeta-
tion–climate–fire relationships globally. Our study provides a critical, necessary step 
in understanding and describing global pyrogeography and tracking changes in spatial 
and temporal fire activity.

Keywords: biogeography, climate change, fire risk, fuel moisture, pyrogeography

Introduction

There is growing consensus that anthropogenic climate change is causing longer and 
hotter fire seasons (Balch et al. 2022, Ellis et al. 2022, Jain et al. 2022), with a cor-
responding increase in the number of wildfires spreading rapidly and with adverse 
social, ecological, and economic impacts (Bowman et  al. 2017, Duane et  al. 2021). 
Climate projections suggest this trend is likely to continue throughout the 21st cen-
tury (Flannigan et al. 2013, Wotton et al. 2017, Abatzoglou et al. 2019, 2021). The 
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annual area burned in forests in the western United States, 
for example, has increased rapidly in the last half century 
(Westerling 2016, Williams et al. 2019) – albeit this trend is 
partially driven by a long history of land-use practices such as 
fire suppression and the reduction or loss of Indigenous fire 
use after colonisation (Abatzoglou et al. 2018). Current clima-
tological and ecological modelling suggests the occurrence of 
severe fire events in the USA recently exhibited by the wide-
spread ecological damage in the 2020 fire season (Higuera and 
Abatzoglou 2020, Abatzoglou  et  al. 2021) will continue to 
increase across affected regions due to anthropogenic climate 
change (Bowman et al. 2020). The potential severity of these 
events, however, may be reduced by fuel management inter-
vention such as the promotion of regular low-severity fire that 
restores pre-colonial fire regimes to western North American 
forests (Abatzoglou et al. 2021, Hessburg et al. 2021). A similar 
increase in severe fires is also evident in southeastern Australia 
(Sharples et al. 2016, Abram et al. 2021), where trends in both 
drought and extreme fire weather combined with the loss of 
Indigenous fire use are believed to have contributed to the 
high social, economic, and ecological costs of the 2019–2020 
fire season, dubbed the Australian Black Summer (Boer et al. 
2020, Nolan et al. 2020, Canadell et al. 2021, Collins et al. 
2021, van Oldenborgh et al. 2021, Mariani et al. 2022).

To monitor and potentially mitigate these risks, research has 
identified common wildfire behaviour and ignition determi-
nants that shape fire regimes (Bradstock 2010, Murphy et al. 
2013). Dead fine fuel moisture content (DFFMC) has been 
identified as a key determinant of the spread of vegetation 
fire. The moisture content of dead surface vegetation such as 
leaves, bark, twigs, and grass is capable of equilibrating with 
atmospheric humidity in under 10 h, and consequently rep-
resents the most ignitable component of vegetation. As the 
ignition of these fuels can then provide the energy to ignite 
both larger dead fuel components and live fuels, DFFMC is 
a key determinant of overall wildfire occurrence, behaviour, 
and greater pyrogeographic patterns. DFFMC can be mea-
sured directly in the field (Bowman et al. 2020) or estimated 
using meteorological indices such as vapour pressure deficit or 
the Canadian Forest Fire Weather Index (FWI) System (van 
Wagner 1987). Accordingly, derived or measured DFFMC 
functions as a prominent proxy for the potential of surface 
litter to ignite and sustain wildfire spread (Murphy  et  al. 
2013, Flannigan et al. 2016, Kelley et al. 2019). DFFMC is 
also of fundamental importance in shaping spatial and tem-
poral patterns of landscape fires from local to global scales. 
For example, moisture differences control the conditions 
for rapid fire spread across different vegetation types such as 
savannas and rainforests (Little et al. 2012).

Prior research identified values of DFFMC associated 
with the upper and lower bounds of wildfire potential 
(Fernandes et al. 2008, Wotton 2008, Slijepcevic et al. 2015, 
Flannigan et al. 2016, Nolan et al. 2016, Boer et al. 2017, 
Filkov et al. 2019, Clarke et al. 2022). For instance, FWI- 
or vapour pressure deficit-derived DFFMC values between 
8 and 12% have been linked to wildfires that evade suppres-
sion efforts (Slijepcevic  et  al. 2015, Flannigan  et  al. 2016, 

Nolan  et  al. 2016, Boer  et  al. 2017, Filkov  et  al. 2019). 
Values of up to 30% have been found to represent the upper 
limits for sustained fire spread in vegetation (Fernandes et al. 
2008) under current atmospheric oxygen concentrations due 
to carbon fibre saturation (Luke and McArthur 1978, Scott 
and Glasspool 2006).

Global and regional studies frequently estimate DFFMC 
within the FWI System due to its ease of calculation and 
interpretation (Field 2020); these studies have often applied 
single-value thresholds to assess patterns and likely trends in 
global fire potential. For instance, an established 10% thresh-
old (Wotton 2008, Flannigan et al. 2016) was used to infer 
that the proportion of fire seasons falling below this critical 
threshold had significantly increased between 1979 and 2019 
for most ecoregions worldwide (Ellis et al. 2022). Such a shift 
is likely to affect established fire regimes, particularly in more 
productive or wet ecoregions.

There are, however, inherent problems with applying 
single-value thresholds to compare different vegetation types 
and climate domains. Ecoregions have evolved with fire 
differently in response to naturally occurring environmen-
tal and biological constraints like soil fertility, climate, and 
the local biota. These evolutionary divergences have led, for 
example, to differences in leaf flammability among species 
caused by physiological traits or leaf chemistry (Mutch 1970, 
Bowman et al. 2014a, Varner et al. 2015). Additionally, it is 
well understood that drivers of fire regimes can differ based on 
the local vegetation structure and the dominant fuel types – 
many of which have been heavily reshaped by anthropogenic 
factors (e.g. rural population growth and promotion of inva-
sive plant species: Pausas and Keeley 2021). It is thus unlikely 
that a single DFFMC value could reflect the ignitability in 
both Mediterranean and tropical forests, for example, where 
fire spread is limited by fuel availability or dry conditions, 
respectively. Additionally, it is unclear if different values of 
DFFMC are associated with specific fire behaviour – for 
example, low thresholds causing crown fires and high thresh-
olds associated with surface fires. Furthermore, fire danger 
indices were developed for specific, regional forest types. The 
FWI System was developed based on mature Pinus banksiana 
and P. contorta landscapes in southern Canada (van Wagner 
1987, Wotton 2008). Despite the FWI System’s established 
global applicability, it was never assumed that the vegeta-
tion in these forests is globally representative, and use of the 
FWI System may consequently be inappropriate for assessing 
fire potential or fuel moisture in different vegetation types 
(Aguado et al. 2007, Wotton and Beverly 2007, Schunk et al. 
2017). This raises a question about how a given fire weather 
index can best be used to retain local relevance by identifying 
ecoregion-specific thresholds below which fire spread is likely 
to be uncontrollable (Clarke et al. 2022).

Building on these studies, we sought to answer the ques-
tion of whether a universal fuel moisture threshold exists as 
a control on fire ignition and spread, while advancing our 
understanding of how fuel moisture acts as a switch for land-
scape fire both regionally and globally. Using a comprehen-
sive dataset of over 700 hierarchically defined ecoregions, we 
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identified flammability thresholds as the DFFMC value most 
strongly associated with rapid step changes in remotely sensed 
burnt area records for each ecoregion. Our methods (Fig. 1) 
bypassed the issues inherent with applying the FWI System 
globally by localising the relationship between DFFMC and 
fire to each ecoregion with associated satellite burnt area 
records. For these same ecoregions, we then applied nonmet-
ric multidimensional scaling to a suite of climatic variables 
with well-established links to fire. We visualised the variable 
reduction from this scaling to inform our development of an 
inferential statistical model and to verify the veracity of flam-
mability thresholds as a biophysical, localised mechanism with 
both Bayesian effects probability measures and measures of 

variable importance. This combination of exploratory analy-
sis and modelling provided a channel to examine both the 
biogeographic and climate characteristics shaping our identi-
fied flammability thresholds as constraints on fire ignition and 
spread, and ensured they represent a biophysical reality.

Material and methods

Geospatial classification

We used the Terrestrial Ecosystems of the World regional 
classification system hosted by the World Wildlife Fund 

ERA5 
reanalysis MODIS

Terrestrial 
ecosystems 
of the world

Calculate dead fine fuel 
moisture content 
(DFFMC)

Calculate cumulative 
proportion of burnt area 
over range of DFFMC

Nonlinear least 
squares regression

Flammability 
thresholds

Nonmetric 
multidimensional 
scaling

Variable 
selection

Generalised 
additive mixed
modelling

Calculate fire activity 
indices

Fire-productivity 
analysis

Variable 
ordination

Dimensional 
diagnostics

Model 
diagnostics

Threshold
diagnostics

Figure 1. Data sources, methods, and outputs. Dashed outlines represent 0.25° gridded data or analyses performed at the 0.25° grid cell 
level. Solid outlines represent data or analyses summarised at the ecoregion level. ERA5 reanalysis data included daily meteorological time-
series (Hersbach  et  al. 2020) and bioclimatic indicator means (BIO01, BIO12 and BIO15: Wouters  et  al. 2021). MODIS products 
included MCD64CMQ (Giglio  et  al. 2018), MOD17A3 (Running  et  al. 2015), MOD44B (DiMiceli  et  al. 2015), and MCD14DL 
(Giglio et al. 2003). Output products were flammability threshold diagnostics (e.g. two-way Dunn’s test for pairwise multiple comparisons), 
model diagnostics (Table 1 and Supporting information), visualised nonmetric multidimensional scaling variable ordination and associated 
dimensional diagnostics, and the analysis of fire activity indices and net primary productivity.
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(Olson  et  al. 2001, Supporting information). This system 
groups regions into a hierarchy: eight realms (e.g. the Indo-
Malay Archipelago and associated lands in Southeast Asia), 
14 biomes (e.g. temperate broadleaf and mixed forests), and 
867 ecoregions (e.g. Madagascar’s subhumid forest). These 
ecoregions represent distinct biota, but do not represent the 
real effects of human land-use practices such as agricultural 
clearing. We removed 95 of the 867 original ecoregions from 
our analyses, including 76 ecoregions with no associated fire 
records (e.g. those in Antarctica). In addition, we removed 
the mangroves biome from all analyses, as this biome com-
prises only 19 small, discontinuous ecoregions with fire histo-
ries primarily determined by neighbouring ecoregions.

Identifying and assessing the ecoregion flammability 
threshold

We used estimated DFFMC (%) as drawn from the FWI 
System’s fine fuel moisture code (van Wagner 1987) as a foun-
dation for identifying ecoregional flammability thresholds. 
We chose this estimation of DFFMC due to its established 
global applicability and ease of both calculation and inter-
pretation (Wotton 2008, Field 2020). To calculate DFFMC, 
we used the European Centre for Medium-Range Weather 
Forecast’s ERA5 atmospheric reanalysis data (Hersbach et al. 
2020) due to its accessibility and worldwide coverage. We used 
these data to calculate daily DFFMC representing noon local 
standard time from 1979 through 2019 at a gridded 0.25° 
spatial resolution. High latitude overwintering periods were 
removed from the records to reduce the false identification 
of dry winter periods as highly flammable (McElhinny et al. 
2020) (see Fig. 1 for a detailed workflow diagram).

To identify the flammability threshold associated with 
fire ignition and spread in each ecoregion, we first calcu-
lated the cumulative proportion of burnt area from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
MCD64CMQ product (2001–2021: Giglio  et  al. 2018) 
over the full range of potential thresholds by ecoregion. We 
chose burnt area from available MODIS data due to the bio-
physical constraint of fuel moisture on fire spread and thus 
wildfire potential (Slijepcevic  et  al. 2015). Other measures 
may be more obfuscated by anthropogenic factors (e.g. igni-
tions: Balch et al. 2017) or weather (e.g. fire radiative power: 
Hernandez et al. 2015). We constrained the upper bounds of 
potential thresholds to 70% DFFMC to allow for a degree of 
uncertainty well above the known limits of the fibre satura-
tion point (Fernandes  et  al. 2008). We summarised ecore-
gional DFFMC records to match the temporal resolution of 
the burnt area record (2001–2019) by extracting the 25th 
percentile from each month’s distribution of daily, grid cell-
level DFFMC records. For each month in the shared record, 
this equation assumes the 25th percentile of the ecoregion’s 
daily DFFMC distribution reflects that ecoregion’s driest 
period. We then used nonlinear least squares regression to fit 
a logistic curve to the relationship between the cumulative 
proportion of burnt area (BA) and the upper limit of each 
ecoregion’s driest monthly DFFMC quartiles:

P BA DFFMC DFFMC( ) ,� �

�
� �� �
�
�

�

1

1
2

3e

	  (1)

where ϕ1, ϕ2 and ϕ3 are the asymptote, curve inflection point, 
and scale parameter of the curve, respectively. We extracted 
ϕ2 as the inflection point with the greatest marginal increase 
in the cumulative proportion of burnt area for a given reduc-
tion in DFFMC. The DFFMC value at ϕ2 is the threshold 
constraining flammability for a given ecoregion. We also 
extracted the reciprocal of ϕ3 as an estimate of the inflection 
point slope and a proxy for the associated threshold strength. 
Fire data within the DFFMC constraints were insufficient to 
identify a flammability threshold for 74 ecoregions. Instead 
of removing these ecoregions from our analyses, we imputed 
the missing values as the median threshold from the same 
hierarchical realm and biome classifications where available. 
For example, the 74 ecoregions include three boreal forest 
ecoregions in the Nearctic and Palearctic realms. We imputed 
the median flammability threshold for Nearctic boreal forests 
(14%) as the value for the two Nearctic ecoregions, and the 
median threshold for Palearctic boreal forests (16.3%) as the 
value for the Palearctic ecoregion. See Supporting informa-
tion for all modelled ecoregional P(BA < DFFMC) curves 
and biome-level means.

We assessed the identified flammability thresholds by first 
visualizing threshold distributions by biome, highlighting the 
median and quantile-based intervals. We confirmed the appar-
ent effects of median biome differences with a Kruskal–Wallis 
rank sum test (Kruskal and Wallis 1952), and then identified 
the mean rank differences between biomes with a two-way 
Dunn’s test for pairwise multiple comparisons (Dunn 1961). 
We extracted non-significant differences between biomes, 
highlighting the similarities in fuel–fire relationships.

Statistical analyses

To identify the climatological factors driving burnt area-
derived flammability thresholds, we used nonmetric multidi-
mensional scaling and generalised additive mixed modelling. 
First, we applied the ordination to a suite of climatological 
and ecological data with known associations with wildfire 
ignition or spread, and then plotted the ordination against 
our identified thresholds. We used bioclimatic indicator 
means (1979–2018) for annual precipitation (BIO12: m), 
annual temperature (BIO01: K), and precipitation seasonality 
(BIO15: %) from the ERA5 reanalysis data, which are avail-
able via the Copernicus Climate Data Store (Hersbach et al. 
2020, Wouters  et  al. 2021). We also used three additional 
MODIS products: mean annual net primary productivity 
(NPP: t C ha−1 year−1) calculated from 2000 through 2015 
(MOD17A3: Running et al. 2015) and the median percent-
age of an ecoregion represented by herbaceous and tree cover 
in 2020 (MOD44B: DiMiceli et al. 2015). We tested both 
two- and three-dimensional ordination on the basis of explor-
atory stress scree and Shepard plotting, ultimately choosing 
the two-dimensional ordination with a stress index of 0.125 
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for simplicity (Supporting information). We plotted the new, 
reduced dimensions with scatterplot variable ordination with 
the underlying distribution of flammability thresholds to 
explore the effects of the different climatological variables and 
reduce the number of variables retained in the model.

Building on the previously identified association between 
intermediate NPP and fire activity (Pausas and Bradstock 
2007, Krawchuk and Moritz 2011, Pausas and Ribeiro 2013, 
Bowman et al. 2014b, Ellis et al. 2022), we plotted mean fire 
activity as a function of global NPP underlain by our identified 
flammability thresholds and the associated threshold strength. 
This analysis uses 0.25° ERA5 grid cells for NPP and indexed 
fire activity (Ellis et al. 2022). Following those prior analyses, 
we calculated fire activity indices (Pausas and Ribeiro 2013) 
with the mean annual (2002–2020) number of fire detections 
recorded in the MODIS active fire database (MCD14DL: 
Giglio et al. 2003) while excluding permanent, anthropogenic 
heat sources. This combination provides insight into how 
flammability (via thresholds and the associated strength) is 
shaped by global patterns of NPP and indexed fire activity.

To measure the effects of climatological variables on flam-
mability thresholds, we employed generalised additive mixed 
modelling with a Bayesian framework. Our model was not 
intended to make predictions but to evaluate whether the iden-
tified thresholds were a functioning, biophysical mechanism 
on ecoregion-level fire behaviour ultimately shaped by mois-
ture availability. Because our flammability thresholds can be 
interpreted as a percentage with a strong positive skew, we esti-
mated the response likelihood function on a beta distribution. 
Although DFFMC as derived from the FWI System can reach 
250%, our thresholds all fall under 100% due to the 70% con-
straint we applied. It is unlikely that any potential flammability 
threshold is above 70% given vegetation’s theoretical maxi-
mum fibre saturation point of 30% (Fernandes et al. 2008). 
Informed by our exploratory analysis of the thresholds and the 
variable ordination, we retained precipitation, temperature, 
precipitation seasonality, and herbaceous vegetation cover as 
fixed continuous effects in the model. Of the highly colinear 
variables, we chose annual precipitation over both NPP and 
percent tree cover due to the former’s reliance on precipitation, 
and the latter’s link to herbaceous cover. As realm and biome 
type do not reflect true vegetation, we retained both as interac-
tive random effects. See the Supporting information for addi-
tional model development details, including data preparation 
steps and specific model parameters.

To evaluate and explain our model, we focused on variable 
importance via permuted root-mean-square error (RMSE) 
dropout loss and Bayesian effects probability measures. These 
two approaches provide simple measures of the effects our 
modelled climate variables have on the global distribution 
of flammability thresholds. We calculated the influence of 
individual variables in the model with sampled (n = 1,000) 
change in the RMSE loss function over 100 permutations. 
We then evaluated the continuous fixed effects of our model 
with sequential effect existence and significance testing. This 
method describes the effects of model parameters, providing 
three probabilities of overall effect direction (i.e. existence), 

practical effect significance, and size (i.e. strength) while also 
being easy to interpret due to their rough equivalence to 
statistical significance (e.g. p < 0.05 or a probability greater 
than 95%).

Results

Distributions of ecoregion flammability thresholds

We identified flammability thresholds for 772 of 867 ecore-
gions classified in the Terrestrial Ecosystems of the World 
dataset (Olson et al. 2001), representing 95% of the total clas-
sified area (135.2 M km2: Fig. 2a and 3). The global mean 
flammability threshold was 12.2%, with a median of 11.5% 
and an interquartile range of 6.92%. Thresholds in 17 ecore-
gions (0.8 M km2) were above the expected maximum of 30%; 
most of these thresholds were likely due to fuel moisture play-
ing a smaller role in fire or insufficient fire data. The strongest 
relationships between DFFMC and burnt area appeared to be 
in deserts, tropical and subtropical savannas, higher-latitude 
forests, and some tundra environments (Fig. 2b).

Across biomes, the lowest identified flammability thresh-
olds were associated with shrublands, woodlands, and savan-
nas (Fig. 3). The highest identified thresholds tended to be 
associated with higher-latitude forests and tundra. Wetter 
temperate and tropical forested biomes were most like these 
high-latitude biomes, but also tended to have the widest 
range of thresholds, suggesting more complex relationships 
among fire, fuel moisture, and human activity. The Kruskal–
Wallis rank sum test for differences in flammability thresh-
olds between biomes was significant (p < 0.001), while 
the pairwise multiple comparisons calculated with Dunn’s 
test highlighted similar and dissimilar biomes. The statisti-
cal grouping of biomes with similar flammability thresholds 
showed a clear gradient across climate, NPP, and vegetation 
types, albeit with a wide intra-biome variability associated 
with the complexity of ecoregions within biomes (Fig. 3). See 
the Supporting information for pairwise multiple comparison 
statistics and summary statistics for flammability thresholds.

Climatic controls on flammability thresholds

The first dimension of the two-dimensional nonmetric mul-
tidimensional scaling was primarily driven by precipitation 
and associated proxies: higher annual precipitation, NPP, and 
more tree cover were linked, influencing fuel–fire relation-
ships in ecoregions where fire is historically limited by fuel 
moisture (Kelley et al. 2019, Fig. 4a–b). The second scaled 
dimension was driven primarily and negatively by tem-
perature and was strongly linked to biomes such as deserts 
where fire is historically limited by fuel availability. Higher 
herbaceous vegetation cover was also prominent on the sec-
ond dimensional axis, and was associated with cooler, drier 
ecoregions such as tundra. Precipitation seasonality had a 
negative effect across the first and second scaled dimensions, 
with higher values of precipitation seasonality representing 
stronger seasonal dryness (e.g. savannas with arid summers).
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Flammability threshold (DFFMC, %)

5 10 15 20 25 30 35

(a)

Threshold strength

−250 −200 −150 −100 −50 0

(b)

Figure 2. Global distributions of (a) identified ecoregional flammability thresholds and (b) the associated threshold strength extracted from 
the P(BA < DFFMC) models. All flammability thresholds above 35% were binned into a single grouping. Lower values of threshold 
strength represent stronger associations between cumulative burnt area probability and DFFMC. Imputed values are included. DFFMC, 
dead fine fuel moisture content.
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The average flammability threshold was well below the 
expected 30% limit for carbon fibre saturation across the 
range of calculated fire activity indices and NPP (Fig. 5a). 
NPP is below 10 t C ha−1 year−1 in most of Earth’s ecore-
gions by land area (Fig. 5a). Within the intermediate NPP 
range (roughly 1.2–5.4 t C ha−1 year−1) where fire activ-
ity indices are maximal, thresholds were moderately higher. 
The lowest flammability thresholds occurred within the least 
productive environments. Low thresholds also occurred 
with higher NPP in ecoregions that frequently burn (e.g. 
annually burnt tropical grasslands). Both areas of extremely 
low thresholds tended to have the most extreme threshold 
strength (Fig. 5c).

Our generalized additive model of flammability thresh-
olds yielded an R2 of 0.682 and an RMSE of 0.038. See the 
Supporting information for comparable statistics for training, 
testing, and cross-validation datasets. The highest probabilities 
of effect existence for the three non-linear bioclimatic variables 
were 100% (annual precipitation), 99.9% (precipitation sea-
sonality), and 98.8% (annual temperature). The probability 
of existence of the linear percent herbaceous cover effect was 
93.3%. Probabilities of effect significance and size were simi-
lar, with only herbaceous cover below 95% (Table 1). Mean 
annual precipitation, mean annual temperature, and mean 

precipitation seasonality had the greatest influence on the 
model’s accuracy, followed by the terrestrial realm and biome 
classifications as random effects. Median percent herbaceous 
cover had a consistent, negligible effect on the model RMSE 
loss. Additionally, all predictor variables except annual precipi-
tation were negatively associated with flammability thresholds. 
See the Supporting information for model evaluation steps, 
including conditional effects and posterior distributions.

Discussion

The significant variability in the biogeography of flammability 
thresholds we revealed (Fig. 2a, 3) suggests that a generalised, 
universal fuel moisture threshold does not capture differences 
in flammability among vegetation types. This variability is 
explained by climatological variables such as precipitation 
and temperature, which in turn influence the distribution of 
vegetation. Climate needs to be considered in concert with 
the threshold strength and fire activity, as outlined below. 
These considerations are important in understanding global 
pyrogeography, including the likely effects of climate change 
on fire regimes, and ecoregions and biomes where fire activity 
is increasing.

Tundra

Boreal forests

Temp. broadleaf forests

Trop. moist forests

Temp. coniferous forests

Montane grasslands

Trop. coniferous forests

Temp. grasslands

Trop. dry forests

Flooded grasslands

Mediterranean forests

Trop. grasslands

Deserts

0 10 20 30 40 50

Flammability threshold (DFFMC, %)

Figure 3. Distribution of the flammability thresholds by biome type, ordered by median flammability threshold. Point and line intervals 
under histograms represent the median equal-tailed distribution intervals of 50 and 90%. Dashed vertical lines reference threshold values 
(8, 12, and 30%) identified as biophysical thresholds constraining fire ignition and spread in prior research (Fernandes et al. 2008, Wotton 
2008, Flannigan et al. 2016, Nolan et al. 2016, Boer et al. 2017, Filkov et al. 2019). See the Supporting information for underlying dead 
fine fuel moisture content (DFFMC) distributions used to identify flammability thresholds. Vertical lines on the right reflect non-signifi-
cant differences in Dunn’s Z statistics for pairwise multiple comparisons. For example, the mean rank of flammability thresholds for deserts 
is comparable to the three biome types below it. The value associated with boreal forests was significantly different from that associated with 
montane grasslands, but not tropical coniferous forests.
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Figure 4. Site scores for the f﻿irst and second dimensions produced by nonmetric multidimensional scaling (NMDS1 and NMDS2) of cli-
matological variables for which associations with wildfire ignition or spread are well-established. (a) Density distribution of the ecoregions 
included in the analyses. Points represent the biome-level mean site scores for both dimensions. (b) Median underlying flammability thresh-
old. Arrows represent the NMDS species scores, or strength and direction of variable influence within the new scaled dimensions.
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Figure 5. Adaptation of the intermediate productivity–fire activity hypothesis as drawn from Ellis et al. (2022) with (a) the total area (M 
km2) of Earth’s surface represented, (b) the mean underlying ecoregional flammability threshold, and (c) the mean underlying threshold 
strength. Solid vertical lines in all figures highlight the 25th, 50th, and 75th percentiles of global net primary productivity (NPP), roughly 
illustrating the range of intermediate NPP most strongly associated with fire activity (~ 1.2–5.4 t C ha−1 year−1); points represent the mean 
locations of biome-level NPP and fire activity indices.
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The biogeography of flammability thresholds

The global averages of our flammability thresholds are close 
to the previous extreme values of 8–12% (Wotton 2008, 
Slijepcevic  et  al. 2015, Flannigan  et  al. 2016, Nolan  et  al. 
2016, Boer et al. 2017, Filkov et al. 2019, Ellis et al. 2022). 
This suggests that commonly used thresholds derived from 
the FWI System and ERA5 reanalysis data reflect biophysical 
factors controlling fire ignition and spread in many ecosys-
tems. Despite this, relying on a global average oversimplifies 
local relationships between fuel moisture and fire, and ignores 
variation in the fibre saturation point among landscapes and 
vegetation types (Fernandes et al. 2008, Alvarado et al. 2020). 
A generalised threshold will often under- or over-estimate an 
ecoregion’s flammability threshold, with the threshold across 
nearly 70% of Earth’s surface above 12% or below 8%. The 
geographic distribution of thresholds (Fig. 2a) and differences 
between and within biomes (Fig. 3) highlight where this 
oversimplification does not reflect the ecoregional flammabil-
ity threshold. This includes, for instance, boreal forest (Q1: 
13.9%, Q3: 16.6%) and tundra (Q1: 17.7%, Q3: 19.8%) 
ecoregions, and North American P. banksiana and P. contorta 
forests where the FWI system originated (van Wagner 1987). 
In such high-latitude ecoregions, the general threshold likely 
misrepresents the true fuel moisture content associated with 
burnt area (Fig. 3). When applying these general thresholds 
for trend analysis or forecasting within these ecoregions, fire 
danger may be underestimated (Ellis et al. 2022).

Biogeographically variable flammability thresholds are 
needed given the role water availability – including the 
moisture content of both live and dead fuels – plays in fuel 
accumulation (Murphy  et  al. 2013). A universal threshold 
oversimplifies how plants in different ecoregions may have 
co-evolved with fire. A bespoke threshold likely can more 
accurately capture the variation in live and dead fuel mois-
ture content associated with the phylogeographic effects of 
foliage flammability (Bowman et al. 2014a) and the structure 
of vegetation and fuel (Pausas and Keeley 2009, Keeley et al. 
2011, Alvarado et al. 2020). For example, accumulation and 
continuity of fuel is necessary to sustain a wildfire ignition 
in many ecoregions. The availability and type of fuel in these 
ecoregions depends on the local climate. Tundra and deserts 
rarely have enough fuel to burn regardless of whether the sur-
face litter is below the flammability threshold. Similarly, fuel 
growth in many temperate coniferous forests has a years- to 
decades-long lag typical of the negative exponential fuel accu-
mulation curve (Olson 1963). The most productive tropical 
forests, by contrast, tend to retain enough water that wildfires 

are rare (Murphy et al. 2013). In these more productive ecore-
gions, the threshold more accurately reflects the flammability 
threshold if the threshold strength is also highly negative. In 
seasonally dry ecoregions, fuel moisture determines whether 
vegetation can ignite and maintain a wildfire, albeit it is 
likely that variation in foliar flammability also contributes to 
flammability threshold variance in comparable climates (e.g. 
Eucalyptus versus Pseudopanax: Wyse et al. 2016).

Interpreting regional variability in flammability 
thresholds

Because we applied methods to derive flammability thresh-
olds to global data, our results reflect an ecological generali-
sation. Although there is variability within each ecoregion 
due to terrain, vegetation, and fuel structure, flammability 
thresholds are still biologically meaningful and should be 
interpreted as representative. That is, an average DFFMC 
near or below our identified threshold for a given ecore-
gion is not representative of the moisture content of all 
fuel particles. The flammability of dead fine fuels differs 
among species and over landscapes where species co-occur 
(Varner et al. 2015), albeit some thresholds are still inaccu-
rate or imprecise. Sources of error include the short length of 
the remotely sensed burnt area records and the difference in 
importance of fuel moisture as a fire trigger across the NPP 
gradient (Fig. 5a–c). For instance, in some ecoregions, the 
modelled P(BA < DFFMC) relationships for some ecore-
gions include gradual shifts in the cumulative proportion of 
burnt area over the full range of DFFMC (Supporting infor-
mation). In other cases, we identified thresholds well above 
the upper limits of the fibre saturation point (i.e. > 30%: 
Fernandes  et  al. 2008). Both of these cases could reflect a 
lack of fire data within the ecoregion, differences in local land 
use (e.g. uncultivated savanna or agriculture: Le Page et al. 
2010, Andela  et  al. 2017), a limited role of fuel moisture 
in fire ignition and spread in that ecoregion (Alvarado et al. 
2020), or a combination of these factors. Our use of the 
25th percentile of each month’s daily DFFMC records to 
identify the flammability threshold also constrains the pos-
sible thresholds identified by controlling the range of avail-
able DFFMC.

The biases in the ERA5 reanalysis product also mean the 
accuracy of our identified thresholds reflecting true mois-
ture content will be lower within the tropics (Lavers et al. 
2022), and that some of the variability in the tropics is inde-
pendent of the biophysical variation expected among true 
flammability thresholds. Burnt area is unable to capture 

Table 1. Continuous linear and non-linear model parameters. The median and 89% highest density interval (HDI) both reflect the posterior 
predictive distribution. Effect existence, effect significance, and effect size are probabilities. Effect significance was based on an estimated 
region of practical equivalence (ROPE) value of 0.181 and the size estimate was based on a default recommended value of 0.3 following 
exploratory analysis.

Parameter Parameter type Median 89% HDI Existence Significance Size

Mean annual precipitation Non-linear (k = 5) 3.451 [2.294, 4.575] 100.0% 100.0% 100.0%
Mean precipitation seasonality Non-linear (k = 8) −1.337 [−2.183, −0.669] 99.9% 99.7% 99.4%
Mean annual temperature Non-linear (k = 5) 1.176 [0.400, 1.922] 98.8% 97.3% 96.1%
Median % herbaceous cover Linear −0.126 [−0.259, 0.006] 93.3% 26.0% 1.9%
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different causes or kinds of fire and fire behaviour, and 
some burnt area-derived flammability thresholds may be 
impacted by intentional application of fire. Additionally, 
our use of burnt area means the flammability thresholds will 
not reflect a ubiquitous relationship between fuel moisture 
and fire behaviour for every ecoregion. While our thresh-
olds may reflect a critical point for higher fire spread rates 
for biome types such as boreal forests, they may also reflect 
low-severity fires typical of, for example, tropical grasslands. 
Furthermore, the ERA5 resolution (0.25°) may be too coarse 
to differentiate the climatology of small ecoregions from that 
of surrounding regions. This includes most flooded grass-
lands and savanna, and tropical and subtropical coniferous 
forests given their small size, number, and geographic range 
(Supporting information).

Our results suggest that climatic factors explain a large 
proportion of the variation in the burnt area-derived flam-
mability thresholds among the ecoregions (Fig. 4a–b, Table 1 
and Supporting information). Overlaying biome means onto 
the ordination, for example, showed that the lowest thresh-
olds in deserts (Q1: 4.2%, Q3: 8%) are strongly associated 
with precipitation seasonality and low values of precipitation 
variables. The highest thresholds in tundra (Q1: 17.7%, Q3: 
19.8%) were associated with high percent herbaceous cover 
and lower temperatures. Higher-latitude boreal forests (Q1: 
13.9%, Q3: 16.6%) and coniferous forests (Q1: 9.3%, Q3: 
17.2%) were associated more strongly with a combination 
of precipitation, temperature, and temperature seasonality. 
However, the precipitation dimension includes the effects of 
NPP and percent tree cover, consistent with pyrogeographic 
theory stating that global fire activity is shaped by productiv-
ity (Pausas and Bradstock 2007, Pausas and Ribeiro 2013, 
Jones et al. 2022). For example, low NPP deserts and xeric 
shrublands feature the most extreme combination of low 
flammability thresholds, threshold strength, and NPP on 
Earth (median of 0.17 t C ha−1 year−1; Fig. 5b–c). However, 
the driest of these environments experience little fire activity 
(< 0.2 indexed fire activity in Fig. 5a–c), and fire is ultimately 
controlled by intermittent periods of high productivity rather 
than moisture content (Archibald  et  al. 2009, Bradstock 
2010, Kelley et al. 2019).

We acknowledge that the mechanisms of ecoregional vari-
ation remain elusive. For instance, we suspect the predomi-
nance of live fuels with flammable foliage in Mediterranean 
ecosystems may explain why we identified lower fuel mois-
ture thresholds for this biome. These live fuels draw water 
from deeper soil layers not directly captured in our DFFMC 
metric and reach the point of ignitability under drought 
conditions (Dimitrakopoulos and Papaioannou 2001). In 
many ecoregions, the local climate influences possible flam-
mability thresholds. The colder temperatures and seasonal 
snowpack in boreal forests, for example, mean that the 
potential for flammability thresholds to be near or below 
12% DFFMC is limited (Supporting information). In con-
trast, Mediterranean ecosystems’ low flammability thresholds 
reflect drought conditions in regularly warm and dry environ-
ments. Additionally, specific local vegetation adaptations and 

structural differences may be more influential in determin-
ing flammability thresholds in some ecoregions. Australian 
Eucalyptus broadleaf forests, for example, have both highly 
flammable live foliage and dead fine fuels.

The measure of fuel moisture content we used is meteo-
rologically determined and represents an average over large 
areas. At local scales, multiple fuel types and sizes (e.g. grass, 
litter, coarse woody debris) are present, and each potentially 
have different fuel moisture content. Thus, a single DFFMC 
for a given ecoregion inherently represents different local and 
fuel-specific moisture values for all live and dead fuels avail-
able to burn. Understanding the mechanisms underlying 
variation in flammability thresholds at finer scales than high-
lighted here requires research at the fuel-bed and fuel-particle 
scales (Varner et al. 2015, Jolly and Johnson 2018).

The relationship among fire activity, fuel moisture, and fuel 
availability invites consideration of climate change, which can 
manifest directly (via fuel moisture) and indirectly (via pro-
duction of phytomass). As ecoregions shift from one biome 
type to another or along the NPP gradient, the associated fire 
activity, flammability thresholds, and threshold strength can 
be expected to shift as well. Tropical and subtropical rainfor-
ests, for example, feature high moisture availability, fuel loads, 
and flammability thresholds (Fig. 5a–c). These ecoregions are 
consequently at risk of ecological state change primarily driven 
by land-use impacts on fire regimes (Le Page  et  al. 2010, 
Canadell  et  al. 2021) and recent drying trends (Ellis  et  al. 
2022). Mediterranean forests are among the least productive 
forests in the world (Fig. 5a–c) and could shift towards savanna 
or grasslands as drying trends continue, amplifying fuel limita-
tion to burning despite warming and drying (Pausas and Paula 
2012, Pausas and Bond 2020). In contrast, fire in most des-
ert landscapes is limited by fuel availability (Bradstock 2010, 
Murphy et al. 2013, Bedia et al. 2015). T﻿hese areas are unlikely 
to have fire regimes driven by anthropogenic climate change 
except along biome transition lines (Archibald  et  al. 2009, 
Senande-Rivera  et  al. 2022) or where moisture is increasing 
over time (Ellis et al. 2022). At the upper limits of the interme-
diate fire-productivity zone, higher NPP (> 4.5 t C ha−1 year−1) 
and fire activity (> 0.5 indexed fire activity) also contribute 
to extreme values of flammability thresholds and threshold 
strength (Fig. 5b–c). This zone includes some of the environ-
ments most at risk under climatic change, including many 
temperate broadleaf and boreal forests susceptible to ecological 
transformation under drying climate trends (Ellis et al. 2022, 
Senande-Rivera et al. 2022) and more productive, climate-lim-
ited tropical savanna ecoregions (Alvarado et al. 2020).

Management relevance

Our burnt area-derived flammability thresholds reduce the 
uncertainty in defining fire season onset. Fire season onset 
is a key pyrogeographic parameter that further defines fire 
regimes and pyromes. At the continental scale, for example, 
fire season onsets in Australia’s fire-prone tropical and tem-
perate ecoregions are driven by a distinct latitudinal climate 
gradient (Murphy et al. 2013, Williamson et al. 2016). The 
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evident trend for fuel moisture in wet Eucalyptus forests along 
this gradient places those ecoregions at risk of ecological trans-
formation due to increasing fire frequency (Bowman  et  al. 
2014b, Furlaud et  al. 2021, McColl-Gausden et  al. 2022). 
In environments where wildfire is of management interest, 
our flammability thresholds can be used to detect the onset 
of a fire season in real time, which may inform the allocation 
of forest management and firefighting resources, and allow 
tracking of the effects of climate change on fire danger in dif-
ferent landscapes.

The identification of changing length, intensity, and 
extremes of fire seasons with meteorological data has gener-
ated evidence of changing global fire risk. Unlike previous 
analyses that used generalised thresholds or assumed thresh-
olds between 8 and 12%, we identified biogeographic varia-
tion in flammability thresholds. Understanding this variation 
is a prerequisite for defining the bounds of the current fire sea-
sons, analysing trends in changing fire seasons, and identifying 
environments most at risk of ecological transformation under 
predicted future fire seasons. Hence, our global data represent-
ing 772 ecoregions are a steppingstone for understanding and 
managing fire regimes at the ecoregion level under continued 
anthropogenic climate change and evolving land-use practices.
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