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Abstract. Understanding the influences of forest management practices on wildfire
severity is critical in fire-prone ecosystems of the western United States. Newly available
geospatial data sets characterizing vegetation, fuels, topography, and burn severity offer new
opportunities for studying fuel treatment effectiveness at regional to national scales. In this
study, we used ordinary least-squares (OLS) regression and sequential autoregression (SAR)
to analyze fuel treatment effects on burn severity for three recent wildfires: the Camp 32 fire in
western Montana, the School fire in southeastern Washington, and the Warm fire in northern
Arizona. Burn severity was measured using differenced normalized burn ratio (dNBR) maps
developed by the Monitoring Trends in Burn Severity project. Geospatial data sets from the
LANDFIRE project were used to control for prefire variability in canopy cover, fuels, and
topography. Across all three fires, treatments that incorporated prescribed burning were more
effective than thinning alone. Treatment effect sizes were lower, and standard errors were
higher in the SAR models than in the OLS models. Spatial error terms in the SAR models
indirectly controlled for confounding variables not captured in the LANDFIRE data,
including spatiotemporal variability in fire weather and landscape-level effects of reduced fire
severity outside the treated areas. This research demonstrates the feasibility of carrying out
assessments of fuel treatment effectiveness using geospatial data sets and highlights the
potential for using spatial autoregression to control for unmeasured confounding factors.

Key words: burn severity; differenced normalized burn ratio (dNBR); fire behavior; fire weather; fuel
treatments; spatial autoregression.

INTRODUCTION

Fuels management has emerged as the cornerstone of

efforts to mitigate the impacts of large, destructive

wildfires in the western United States. Fuels are of par-

ticular interest from a management standpoint because,

unlike topography and weather, they can be modified

through management activities. Various types of fuel

treatments are currently being applied in western forests.

In particular, thinning of overstory and subcanopy trees

has been proposed as a technique to reduce horizontal

and vertical continuity of the forest canopy and thus

decrease the hazard of fast-moving and destructive

crown fires (Agee and Skinner 2005). Other treatments

such as burning, piling, mastication, and compaction

can alter the amount, size distribution, and spatial

arrangement of surface fuels, reducing the spread rate

and intensity of surface fires (Kalabokidis and Omi

1998, Jerman et al. 2004, Stephens and Moghaddas

2005). Fuel treatments have the potential to reduce tree

mortality and other fire effects at a local level (Ritchie et

al. 2007), limit the rate of fire growth across broader

landscapes (Finney 2001), and increase the effectiveness

of fire suppression activities (Moghaddas and Craggs

2007). However, despite the widespread application of

fuel treatments, there is only limited information

available about their actual effectiveness in modifying

wildfire effects.

Most empirical studies of fuel treatment effectiveness

have been case studies focusing on one or a few wildfires.

Not surprisingly, studies conducted in a variety of forest

ecosystems using different methodologies have produced

a range of conflicting results. For example, an analysis of

four wildfires in Montana, Washington, California, and

Arizona found that thinning alone, prescribed burning

alone, or thinning followed by prescribed burning all

reduced fire severity compared to untreated areas (Pollet

and Omi 2002). In contrast, on the Cone fire in northern
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California, tree mortality was lower in stands treated

with thinning and prescribed fire, but not in stands

treated with thinning alone, compared to untreated areas

(Ritchie et al. 2007). On the Biscuit fire in southwestern

Oregon, fire severity was higher in stands subjected to

thinning and salvage logging than in untreated areas

(Raymond and Peterson 2005, Thompson et al. 2007).

To enhance fuels management efforts, an understanding

of the conditions under which various types of fuel

treatments reduce fire severity is needed. In particular,

there is a need to analyze large numbers of fuel treat-

ments across multiple fires and forest types to draw

conclusions at regional to national levels.

The availability of data from several national projects

now provides an opportunity for carrying out this type

of assessment. LANDFIRE is a multi-agency project

that is producing geospatial data sets of vegetation,

fuels, and fire regimes across the entire United States

(Rollins and Frame 2006). The Monitoring Trends in

Burn Severity (MTBS) project is another multi-agency

effort using satellite imagery to map burn severity for all

large wildfires occurring in the United States between

1984 and 2010 (Eidenshink et al. 2007). Both of these

projects produce spatial data sets at a 30-m resolution

that can be used to study burn severity patterns within

individual fires. Although a comprehensive national

database of geolocated treatments does not currently

exist, GIS data on recent fuel treatments is widely

available from various public land management agen-

cies. However, integrating these data to study fuel

treatment effectiveness requires a consistent analytical

strategy that can be applied to multiple fires across a

variety of ecosystems.

There are several methodological challenges associat-

ed with using geospatial data sets to assess treatment

effectiveness. One issue is that fuel treatments are not

randomly located within fires, and are therefore usually

confounded with other environmental variables. A

treated stand with fire severity lower than an untreated

stand may result from the treatment itself, or from

differences in topography and vegetation characteristics

between the treated and untreated areas. For this

reason, simple overlays of treatment polygons onto

burn severity maps can result in misleading conclusions

about the effectiveness of treatments. Regression anal-

ysis is frequently used in observational studies to make

inferences about treatment effects conditional on the

effects of one or more confounding variables (Gelman

and Hill 2007). However, not all confounding variables

are measurable. For example, spatial and temporal

variability in temperature, wind speeds, and fuel

moisture all influence fire behavior as the flaming front

moves across the landscape. With geospatial data sets,

one approach to this missing variable problem is to

utilize spatial autoregressive models, in which unmea-

sured but spatially structured environmental variables

can be modeled indirectly using a spatial error term

(Haining 1990). Although several studies have used

spatial autogression and related techniques to analyze

fire severity patterns (Finney et al. 2005, Thompson et
al. 2007, Wimberly and Reilly 2007), none has explicitly

examined the information captured by the spatial error
term.

The main goals of this research were to develop a
methodology for combining data from LANDFIRE and

MTBS with spatial data on fuel treatment locations to
quantify treatment effects on burn severity, and to apply
this method in a case study to assess fuel treatments on

three fires occurring in different ecosystems. Specific
research objectives were to assess the effectiveness of

LANDFIRE data in controlling for the influences of
fuels, vegetation, and topography on burn severity

patterns; and to determine whether spatial autoregres-
sion can be used to capture spatiotemporal variability in

fire weather, landscape-level treatment interactions, and
other confounding factors not accounted for in the

LANDFIRE data set.

METHODS

Data sources

Our study focused on three recent wildfires in the
western United States that burned through a variety of

fuel treatments: the Camp 32 fire in the Rocky
Mountains of northwestern Montana (372 ha), the

School fire in the Blue Mountains of southeastern
Washington (19 871 ha), and the Warm fire on the

Kaibab Plateau in northern Arizona (23 490 ha).
Additional site descriptions and fire narratives are

provided in Appendix A. Maps of the differenced
normalized burn ratio (dNBR) were obtained from the

Monitoring Trends in Burn Severity (MTBS) project as
30-m raster GIS layers (Fig. 1). The normalized burn

ratio (NBR) was computed from pre- and postfire
Landsat images using bands 4 and 7, and dNBR was

computed as the difference between the pre- and postfire
images (Key and Benson 2005). The dNBR index has
been shown to correspond well to field-based measure-

ments of fire severity in a variety of ecosystems and to
compare favorably with other remotely sensed burn

severity indices (Van Wagtendonk et al. 2004, Cocke et
al. 2005, Epting et al. 2005, Wimberly and Reilly 2007).

Canopy cover, fuel model, elevation, slope angle, and
slope aspect data sets were obtained from the LAND-

FIRE project as 30-m raster GIS layers. Aspect was
transformed via a cosine function into a heat load index

that was highest on southwest aspects and lowest on
northeast aspects. Fuel models were from the expanded

set of 40 standard fire behavior fuel models (Scott and
Burgan 2005), and were coded using treatment con-

trasts. For each fire, the fuel model covering the largest
area was selected as the baseline class, and the other fuel

models were represented as indicator variables.
Maps of recent fuel treatments were obtained as shape

files from the Kootenai National Forest (Camp 32 fire)
the Umatilla National Forest (School fire), and the

Kaibab National Forest (Warm fire). These maps were
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converted to 30-m raster GIS layers. We did not attempt

to map all of the historical management activities within

the fire boundaries. Instead, we focused on specific

activities that are currently being applied for treating

forest fuels, and that were recent enough for us to

acquire accurate spatial data on treatment locations.

Fuel treatments in the areas burned by the three fires

included thinning alone, thinning followed by prescribed

burning, and prescribed burning alone (Fig. 1, Appendix

A). On the Warm fire, the effects of historical shelter-

wood harvests and historical wildfires were also

examined. Treatments were coded as indicator variables

with untreated areas as the baseline class.

Fire progression maps were obtained for School and

Warm fires (Appendix A). There was no fire progression

map for the Camp 32 fire because it burned for less than

one day. These maps consisted of polygons, each of

which encompassed the area burned during a particular

time period. Most polygons represented the area burned

during a single day of fire spread, although there was

some variability in the temporal resolution. The fire

progression polygons were coded as indicator variables

with one time period set as the baseline class (5–6

August for the School fire and 25–26 July for the Warm

fire). The rate of spread was computed for each polygon

as the ratio of the polygon area to the length of time

represented by the polygon.

FIG. 1. Differenced normalized burn ratio (dNBR) maps of the Camp 32 (western Montana), School (southeastern
Washington), and Warm (northern Arizona) fires with fuel treatment polygons.
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Analysis methods

The analyses were carried out on a 25% subsample of

the 30-m pixels, with the sample of pixels distributed on

a 603 60 m square lattice. All analyses were carried out

in the R statistical analysis environment (R Develop-

ment Core Team 2008). Four types of statistical models

were examined, with dNBR as the continuous dependent

variable for each model: (1) ordinary least-squares

(OLS) regression with independent variables character-

izing topography, fuels, vegetation, and fuel treatments;

(2) OLS with date of burning added to the independent

variables from model 1; (3) simultaneous autoregression

(SAR) with independent variables characterizing topog-

raphy, fuels, vegetation, and fuel treatments; (4) SAR

with date of burning added to the independent variables

from model 3. The spatial autoregressive models were

fitted using the spautolm function from the spdep spatial

analysis package in R (Bivand 2002). Sample R code for

computing the spatial weights and fitting the models is

provided in the Supplement.

The SAR models explicitly accounted for spatial

autocorrelation by incorporating a spatial term into the

standard regression model:

Y ¼ Xbþ kWðY� XbÞ þ e

where Y is a vector of dependent variables, X is a matrix

of independent variables, b is a vector of parameters, k is

the autoregressive parameter that captures the degree of

spatial autocorrelation among neighboring observa-

tions, W is a spatial weights matrix, and e is a vector

of uncorrelated errors. The spatial trend, Xb, reflected
the spatial variability in burn severity that was predicted

by LANDFIRE variables as well as treatment effects.

The spatial signal, kW(Y � Xb), captured spatially

autocorrelated deviations from the trend that were

modeled as an autoregressive function of deviations in

neighboring sites. The noise term, e, captured deviations

from the trend that were not spatially autocorrelated.

The spatial weights matrix, W, was based on an inverse

distance rule in which the 12 nearest neighbors were

assigned weights based on 1/dij, where dij was the

distance from the focal cell i to neighbor j.

The four statistical models for each fire were ranked in

terms of their fit to the dNBR data using the AIC

statistic (Burnham and Anderson 2002). We also

computed pseudo-R2 statistics for each model as the

squared correlation between the observed dNBR values

and the fitted values (Zheng and Agresti 2000). The

fitted values of the SAR models (Eq. 1) were decom-

posed into maps of the spatial trend, spatial signal, and

noise components (Haining 1990). These maps were

derived from model 3, the SAR model without fire

progression. Maps of the signal terms were examined

visually to search for patterns of any important driving

variables that were not captured in the trend compo-

nent. For the School and Warm fires, the signal maps

were overlain on the fire progression maps and Pearson

correlation coefficients between mean signal values and

the rate of burning for each fire progression period were

calculated to test the hypothesis that the spatial error

captures spatiotemporal variability in fire weather and

the resulting rates of fire spread.

RESULTS

For all three fires, the OLS models without fire

progression had the weakest fit as quantified by high

AIC values and low R2 values (Table 1). Adding the fire

progression variables to the OLS models for the School

and Warm fires improved fit slightly. The SAR models

without fire progression improved model fit consider-

ably compared to the OLS models. The SAR models

with fire progression improved model fit slightly

compared to the SAR models without fire progression.

The model coefficients, standard errors, and the results

of statistical tests on the coefficients were similar for the

SAR models fitted with and without fire progression

variables (Appendix B). These results demonstrated that

(1) the spatial error term in the SAR models accounted

for nearly all of the variability in fire severity that was

captured by the fire progression maps, and (2) the

decision to include or exclude the fire progression

variables in the SAR models had a minimal influence

on inferences about treatment effects on burn severity.

In most cases, the treatment effects in the SAR models

were lower than in the comparable OLS models (Table

2). On the School fire, the positive effect of prescribed

burning was higher in the SAR model than in the OLS

model, although the effect was not statistically signifi-

cant in either model. For all fuel treatments on all three

fires, the standard errors of the treatment effects were

higher in the SAR models than in the OLS models.

Thus, inferences about treatment effectiveness based on

OLS overestimated both the effect size and statistical

significance of fuel treatments. We therefore based our

analysis of treatment effects on the SAR models without

fire progression variables for the Camp 32 fire, and the

TABLE 1. Regression models of differenced normalized burn
ratio (dNBR) for three wildfires.

Fire and model n AIC R2

Camp 32

1) OLS 1033 13 641 0.46
3) SAR 1033 13 026 0.75

School

1) OLS 53 631 718 755 0.43
2) OLS with fire progression 53 631 714 433 0.47
3) SAR 53 631 679 434 0.77
4) SAR with fire progression 53 631 679 378 0.77

Warm

1) OLS 58 726 756 377 0.22
2) OLS with fire progression 58 726 740 952 0.40
3) SAR 58 726 699 278 0.75
4) SAR with fire progression 58 726 699 134 0.75

Note: Abbreviations are: OLS, ordinary least-squares
regression; SAR, sequential autoregression; AIC, Akaike
information criterion; n, sample size for each model.
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SAR models with fire progression variables for the

School and Warm fires.

For the Camp 32 fire (Table 2), thinning alone

increased burn severity, whereas the combination of

thinning and prescribed burning decreased burn sever-

ity. For the School fire, the combination of thinning and

prescribed burning resulted in lower burn severity than

untreated areas, and thinning alone also decreased burn

severity. The effect of prescribed burning alone was not

statistically significant. For the Warm fire (Table 2),

prescribed burning alone and shelterwood harvesting

resulted in lower burn severities than untreated areas. In

contrast, thinning alone increased burn severity over

untreated areas. The small negative effect of previous

wildfires was not statistically significant. Canopy cover,

one or more topographic variables, and one or more fuel

models were statistically significant in all three fires

(Appendix B). Most of the fire progression variables

were also statistically significant in the School and

Warm fires, reflecting higher fire severity during days

with extreme fire weather at the beginning of the School

fire, and at the end of the Warm fire (Appendix B).

In the SAR model for the Camp 32 fire, the spatial

signal was generally highest in the central portion of the

burn and lowest at the edges (Fig. 2a). These signal

patterns likely represented temporal variability in

weather and fire behavior throughout the course of the

day, and may have also captured treatment heterogene-

ity within the thinned and burned areas. The mean

spatial signal from the SAR model without fire pro-

gression variables (model 3) was positively correlated

with the mean rate of fire spread for each fire

progression polygon for both the School fire (r ¼ 0.70,

P¼ 0.05) and the Warm fire (r¼ 0.75, P¼ 0.005). These

relationships indicated that the spatial signal was

associated with spatiotemporal patterns of fire weather

and the resulting fire behavior. This relationship was

particularly evident in the Warm fire (Fig. 2c), in which

high spatial signal values were concentrated in the

eastern and southern portions of the burn. This is the

area where plume-dominated fire behavior drove rapid

spread toward the southwest from 25 June to 26 June.

The School fire exhibited a distinctive zone of low

spatial signal values in the southeastern portion of the

burned area (Fig. 2b). The boundaries of this zone did

not correspond with the fire progression map, but were

instead associated with an area where there was a high

density of fuel treatments. This pattern provided

evidence of a landscape-level treatment effect, in which

influences of fuel treatments on fire behavior reduced

burn severity outside of the fuel treatment boundaries.

DISCUSSION

Results of these analyses support the assertion that

treatment of surface fuels is critical for fire severity

reduction (Agee and Skinner 2005). In particular,

prescribed burning has been argued to be the most

effective treatment for reducing the fine surface fuel

loadings that have a major influence of fire behavior and

fire effects. In our study, combined thinning and

prescribed burning reduced burn severity on the Camp

32 and School fires, and prescribed burning alone

reduced burn severity on the Warm fire. In contrast,

thinning without treatment of the resulting slash

actually increased burn severity on the Camp 32 and

Warm fires. This result corroborates studies of the

Biscuit fire in southwestern Oregon which found higher

fire severity in areas with recent forest management

activities than in unmanaged areas (Raymond and

Peterson 2005, Thompson et al. 2007). The situation in

the thinned areas on the Camp 32 and Warm fires

treatments represent a worst-case scenario in which a

wildfire occurred before the thinning treatment was

completed and loadings of surface fuels were therefore

TABLE 2. Treatment effects from ordinary least-squares and sequential autoregression models of dNBR for three wildfires.

Fire and treatment�

Ordinary least squares Sequential autoregression

b SE P b SE P

Camp 32�
Thinning 96.12 13.26 ,0.001 57.41 25.53 0.025
Thinning/prescribed burn �178.48 22.13 ,0.001 �77.50 35.04 0.027

School§

Prescribed burn 1.48 5.15 0.774 11.46 12.08 0.343
Thinning �110.39 10.40 ,0.001 �26.81 12.93 0.038
Thinning/prescribed burn �145.10 5.42 ,0.001 �27.43 6.76 ,0.001

Warm§

Shelterwood �20.70 2.75 ,0.001 �14.11 3.35 ,0.001
Prescribed burn �40.54 7.05 ,0.001 �43.14 15.56 0.006
Thinning 204.47 22.82 ,0.001 69.23 24.87 0.005
Historical wildfire �39.25 16.95 0.021 �26.53 23.02 0.249

� Coded as indicator variables with untreated as the baseline class.
� The OLS and SAR models for the Camp 32 fire did not include fire progression variables (models 1 and 3 inMethods: Analysis

methods and Table 1).
§ The OLS and SAR models for the School and Warm fires included fire progression variables (models 2 and 4 in Methods:

Analysis methods and Table 1).
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particularly high. In contrast, four-year-old thinning

treatments on the School fire and 14–18-year-old

shelterwood harvests on the Warm fire reduced burn

severity compared to untreated areas.

Empirical assessments of fuel treatment effectiveness

are by necessity based on retrospective, observational

studies of wildfires that have burned over one or more

fuel treatments. Therefore, it is not possible to random-

ize treatment locations with respect to vegetation,

topography, weather, and other factors that affect burn

severity; and comparisons of the average burn severity

among treatments are typically confounded by these

other factors. Regression analysis can be used to control

for these effects if all confounding variables are included

in the model, and if the model is correctly specified

(Gelman and Hill 2007). For all three fires that we

analyzed, canopy cover and at least one topographic

variable and fuel model had a statistically significant

relationship with burn severity, emphasizing the impor-

tance of including these variables in assessments of fuel

treatments effects. However, these analyses can still be

confounded by omitted or ‘‘lurking’’ variables, particu-

larly those related to fire weather. Although there have

been attempts to incorporate fire progression maps and

weather data into spatial analyses of fire severity (e.g.,

Collins et al. 2007), they have only been partially suc-

cessful because of the coarse scale of fire progression

polygons and the large differences between conditions at

the flaming front and weather data collected at the

nearest stations.

FIG. 2. Spatial signal maps of the Camp 32, School, and Warm fires with fuel treatment polygons.
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Spatial regression analysis provides an approach for

incorporating information about fire weather and other

omitted variables. The phenomenon of spatial autocor-

relation can be framed as a missing variables problem, in

which the pattern of model errors represents one or

more spatially structured independent variables that are

missing from the regression model (Ver Hoef et al.

2001). In the case of the SAR model, these unmeasured

variables are modeled indirectly by a spatial signal term

that can be computed and mapped for each pixel. We

found that signal values were highest in the portions of

the fires that burned most rapidly, indicating that burn

severity was highest during periods of rapid fire spread

and extreme fire behavior. Even when indicator vari-

ables for the fire progression polygons are included as

independent variables, SAR models substantially im-

proved the fit compared to the OLS models. This finding

reflects the ability of the SAR models to capture the

influences of weather variability at finer spatial and

temporal scales than fire progression maps, in which

each polygon typically encompasses one to three days of

fire growth.

Spatial regression modeling can also provide insights

into other missing variables and processes affecting

patterns of burn severity. On the School fire, a large

cluster of low signal values was associated with an area

that had a high density of fuel treatments. We inter-

preted this pattern as evidence of a landscape-level

treatment effect, in which the combined influences of fire

interactions with the treated areas reduced burn severity

even in nearby areas that were outside the treated units.

These types of landscape-level effects have been

demonstrated in simulation modeling studies (Finney

2001), and have been observed in the burn severity

patterns resulting from the 2002 Rodeo and Chediski

fires (Finney et al. 2005). In the present analysis,

mapping the spatial signal allows spatially structured

patterns of burn severity to be separated from patterns

related to vegetation, fuels, and topography, and from

the uncorrelated error term. Thus, it is possible to verify

that the observed cluster of low burn severity is not an

artifact of one or more confounding variables, but

instead likely represents a true landscape-level effect

resulting from the interaction of fire spread and the high

density of fuel treatments.

Although the present study addressed only three

wildfires occurring in ponderosa pine forests of the

western United States, the approach could be adapted

and applied in a variety of ecosystems. We focused on

dNBR as a burn severity metric because of its wide-

spread use and acceptance in the fire management and

forestry communities. However, the same modeling

approach could be used with relative versions of dNBR

(Miller and Thode 2007) or with any other continuous

burn severity metric. Different sets of confounding

variables will likely be important in different regions,

and various types of model-selection methods (e.g.,

Burnham and Anderson 2002) could be applied to select

a parsimonious set of covariates. Different spatial re-

gression modeling approaches, such as generalized least

squares (Thompson et al. 2007) could also be applied.
Although GLS and related methods allow for more

precise modeling of spatial autocorrelation via a semi-

variogram, we chose spatial autoregression for analyzing

fuel treatment effectiveness because of the potential for
spatial analysis of large data sets (.50 000 samples for

the School and Warm fires) using the sparse matrix

algorithms available in R. Conditional autoregression

(CAR) could also be used (Finney et al. 2005), although
we used the SAR model in this application because its

specification allows for a more straightforward decom-

position of the response into spatial trend and spatial
signal components (Haining 1990).

In conclusion, LANDFIRE and similar data products

can be used to control for at least some of the con-

founding effects of vegetation, topography, and other

environmental variables in assessments of treatment
effectiveness. However, obtaining accurate measure-

ments of other potential confounders such as fire

weather still presents a challenge. Spatial autoregression

can be used to indirectly control for these unmeasured
variables by modeling them via the spatial signal term.

The spatial signal can also be used to visualize other

unmeasured effects, such as landscape level effects

resulting from the interaction of fire spread with
multiple treatments.
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APPENDIX B

Tables of coefficients, standard errors, and P values for the ordinary least-squares and sequential autoregression models
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SUPPLEMENT

Sample R script and data for analyzing fuel treatment effects on burn severity using ordinary least-squares regression and
sequential autoregression (Ecological Archives A019-057-S1).
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