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Widespread outbreaks of the mountain pine beetle (Dendroctonus ponderosae Hopkins) in the lodgepole
pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of North America have produced stands
with significant levels of recent tree mortality. The needle foliage from recently attacked trees typically
turns red within one to two years of attack indicating successful colonization by the beetle and tree
death. Attempts to model crown fire potential in these stands have assumed that the moisture content of
dead foliage responds similarly to changes in air temperature and relative humidity as other fine, dead
surface fuels. However, this assumption has not been verified. In this exploratory study we sampled the
moisture content of dead foliage on an hourly basis through two different diurnal cycles during the fire
season and compared the results to measurements of 10-h fuel moisture indicator sticks and predictions
made from models used to estimate dead fuel moisture in the USA, Canada, and Australia. The observed
degree of variation in dead foliar moisture content was small (6.9e14.5%) with a mean value of w10%. All
existing models performed poorly, but measurements of 10-h fuel moisture and a modified version of an
existing model where timelags were extended to w20-h had the best fit to the data. The results from our
study suggest that the dead foliage on attacked trees does not respond similarly to changing environ-
mental conditions as other fine, dead surface fuels as has been assumed. This in turn has important
implications for wildland fire suppression operations, including firefighter safety, and in modeling fire
behavior, and solicits the need for further research.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recent and dramatic increases in the total area and severity of
mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins)
caused outbreaks in stands of lodgepole pine (Pinus contorta Dougl.
ex Loud. var. latifolia Engelm.) have occurred throughout western
NorthAmerica (Bentz et al., 2010) sometimes producing a sea of “red
and dead” trees. Once attacked, individual trees undergo substantial
changes in foliar moisture content (FMC), chemistry, and resulting
flammability as they progress from green-infested (attacked during
the current summer), to yellow(attacked theprevious summer), and
to red (attacked twoormoreyears previously) (Jollyet al., 2012; Page
et al., 2012). During this dry down process, both Jolly et al. (2012), in
north-central Colorado andwesternMontana, and Page et al. (2012),
in far eastern Idaho, showed that successfully attacked trees expe-
rience a nearly 10-fold decrease in FMC. This process is similar to the
decline inmoisture content observed in logging slash following tree
: þ1 435 797 3796.
s).
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harvesting (Kiil, 1968) and to the seasonal changes that occur in
grass fuels undergoing a transition fromgreen to fully cured (Mutch,
1967). Once in the red stage, infested tree FMC was found to range
from 6 to 32% with a mean of 12% by Jolly et al. (2012) and 9 to 41%
with a mean of 13% by Page et al. (2012).

Concerns about increases in crown fire potential in recently
attacked stands have been raised as a result of the observed in-
creases in flammability caused by the reduction in FMC of infested
tree foliage (Jenkins et al., 2012). Attempts to assess crown fire
potential in MPB-affected lodgepole pine stands (Simard et al.,
2011; Hoffman et al., 2012; Schoennagel et al., 2012) through the
use of fire behavior modeling systems and simulators have
assumed that the dead FMC of recently attacked trees respond
similarly to changes in air temperature and relative humidity as
other fine, dead surface fuels (Hartford and Rothermel, 1991).
However, this assumption has yet to be verified.

The focus of this exploratory study was to examine the varia-
tions in dead FMC over the course of the diurnal cycle following the
“bottoming out” of dead FMC during the red stage of MPB attack
during rainless periods in the Intermountain Region of the western
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Table 1
Measures of long term dryness for the site for each of the sampling days. All values were calculated based on historical data from the Hewinta RAWS. Measures of dryness
included the Energy Release Component (ERC) from the National Fire Danger Rating System, the Duff Moisture Code (DMC) and Drought Code (DC) components of the Ca-
nadian Forest FireWeather Index System, and the KeetcheByramDrought Index (KBDI). Themeans, standard errors, and 90th percentiles were based on the historical weather
for that day from the period 1984 to 2012. Not all days had the same number of observations; May 29 (20 years of data), May 30 (19 years of data), August 3 and 4 (26 years of
data).

Date (2012) ERC DMC DC KBDI

Obs Mean � S.E. 90th Obs Mean � S.E. 90th Obs Mean � S.E. 90th Obs Mean � S.E. 90th

May 29 49 40 � 2.4 54 55 30 � 4 57 215 338 � 38 573 87 14 � 3 38
May 30 51 40 � 2.6 55 58 29 � 4 59 220 327 � 39 579 88 14 � 3 43
August 3 54 40 � 2.8 60 44 41 � 5 81 474 389 � 45 734 87 62 � 10 129
August 4 56 40 � 2.7 56 48 38 � 5 69 481 389 � 45 736 90 59 � 10 128

Note: Obs, observed value; S.E., standard error; 90th, 90th percentile.

1 The concept of timelag is defined to be the amount of time required for a fuel
particle to lose approximately two-thirds of its initial moisture content. Whereas
the equilibrium moisture content (EMC) is the moisture content a dead fuel particle
would obtain in constant environmental conditions when there is no longer a net
moisture exchange (Bradshaw et al., 1984).
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United States. Sample data were collected during the course of two
distinctly different diurnal cycles during the early (May) and later
portions of the fire season (August) in order to first examine the
variations in dead FMC and then use that data to compare to
measurements of 10-h fuel moisture indicator sticks and to eval-
uate models of dead fuel moisture considered suitable for esti-
mating dead FMC.

2. Material and methods

2.1. Study area

Sampling was conducted on the Evanston-Mountain View Ranger District of the
Uinta-Wasatch-Cache National Forest in north-eastern Utah (40� 570 3.700 N,110� 290

6.400 W), immediately adjacent to the Hewinta remote automated weather station
(RAWS) (Weather Information Management System ID 420705) (Zachariassen et al.,
2003). The site is flat (<5% slope) and at an elevation of 2800m abovemean sea level
on the north slope of the Uinta Mountains. Vegetation is dominated by extensive
stands of mature lodgepole pine which have experienced widespread MPB-caused
mortality since the mid-2000s.

The Hewinta RAWS is maintained by the U.S. Forest Service and currently meets
the criteria for designation as a year round data collection station with hourly
transmissions of precipitation duration and amount, a 10-min averagemeasurement
of relative humidity, wind direction and speed (6.1-m height), a 60-min average of
solar radiation, and an instantaneous air temperature (National Wildfire
Coordinating Group, 2012). The instantaneous and 10-min average readings are
taken within 5 and 15 min of the transmission time, respectively. The temperature
and moisture of a ponderosa pine (Pinus ponderosa Laws.) dowel mounted to the
station located approximately 25e30 cm above a representative surface fuelbed are
also transmitted instantaneously (National Wildfire Coordinating Group, 2012).

2.2. Field procedures

Hourly collections of dead FMC from red needles of six MPB-attacked lodgepole
pine trees were made in 2012 during a 28-h period fromMay 29 to 30 (period 1) and
a 27-h period from August 3 to 4 (period 2). Previous seasonal sampling of dead FMC
in red needles of lodgepole pine by Page et al. (2012) indicated relatively small
variation in moisture content from tree to tree, thus three different trees each
sampling period was deemed adequate for this study.

Weather data from the RAWS station for the years 1984e2012 were used to
compare the current level of dryness with historic levels for each sampling period
based on four fire danger indexes. These indexes included the Energy Release
Component (ERC) from the U.S. National Fire Danger Rating System (NFDRS)
(Deeming et al., 1977), the Duff Moisture Code (DMC) and Drought Code (DC)
components of the Canadian Forest Fire Weather Index System (Van Wagner, 1987),
and the KeetcheByram Drought Index (KBDI) (Keetch and Byram, 1968).

During each sampling period, the three most suitable red trees were selected
for sampling based upon (i) minimizing the distance from the RAWS Station, and
(ii) similarity in terms of diameter at breast height (DBH), total tree height, crown
base height, and estimated year of attack. All sample trees were located within
200 m of the RAWS and had DBHs of 24.4, 23.4, 41.9, 22.1, 18.5 and 22.4 cm and total
tree heights of 15, 13, 15, 16, 12, and 13 m. All trees were judged to have been
attacked in 2009 based on characteristics of MPB-attacked trees as described by
Safranyik and Carroll (2006). The stand adjacent to the stationwhere sampling took
place was open with an estimated basal area of 18e23 m�2 ha�1 and 500e
800 stems ha�1.

The sampling procedure consisted of the removal of approximately 15e30 g of
foliage from the lower third of the crown taken at 10 min past the hour on each tree,
every hour, corresponding to the transmission time of the RAWS. It is recognized
that themoisture content of the lower crownmay not be representative of the entire
tree, however, the lower crown FMC is the most important in terms of crown fire
initiation and thus the focus of our sampling. Each samplewas immediately weighed
to the nearest 0.01 g in the field to obtain a fresh or wet weight and placed in a bag
and labeled for transport back to the laboratory.

In total 84 samples were collected during sampling period 1 and 81 samples
during period 2. Five samples were excluded due to illegible wet weight observa-
tions recorded in the field. In the laboratory, samples were placed in a forced air-
drying oven for 24 h at a temperature of 105 �C (Matthews, 2010). The samples
were then removed from the oven and reweighed to obtain the dry weight which
was used to compute dead FMC as a percentage of the oven-dry weight.

2.3. Performance of dead fuel moisture models

The sampled dead FMCs were compared to predicted values of dead fuel
moisture using the following mathematical models: (i) the 1-h and 10-h timelag1

fuel moisture of the NFDRS (Deeming et al., 1977; Bradshaw et al., 1984); (ii) the
NFDRS adapted Nelson (2000) model for 1-h and 10-h timelag fuel moisture; (iii) the
hourly Fine Fuel Moisture Code (FFMC) model (VanWagner, 1977a) of the Accessory
FuelMoisture System of the Canadian Forest Fire Danger Rating System (Stocks et al.,
1989); (iv) the fine dead fuel moisture look-up table procedures presented by
Rothermel (1983); (v) the AERIAL model of Pook (1993) for suspended dead needles
of radiata pine (Pinus radiata D. Don) in Australia; and (vi) a simple index of fine fuel
moisture content devised by Sharples et al. (2009) using a scaling factor of
a ¼ 0.5312 taken from Sharples and McRae (2011).

A modified NFDRS model was also evaluated using the adsorption and
desorption timelag values for recently cast lodgepole pine needles, 34.43 h and
20.75 h respectively, from Anderson (1985), which were used to modify the NFDRS
fine fuel moisture content equations provided by Bradshaw et al. (1984). Addi-
tionally, the equilibrium moisture content (EMC) regression equations provided by
Anderson (1990a) for recently cast ponderosa pine needles were substituted for the
original EMC equations used by Bradshaw et al. (1984). Weather observations from
the five days prior to each sampling period were used to initialize the modified
model with a starting fuel moisture of 10%.

To evaluatemodel performance, four deviation statisticswere calculated based on
recommendations of Fox (1981) and Willmott (1982). These were the root mean
squareerror (RMSE),meanabsolute error (MAE),meanabsolute percent error (MAPE),
and mean bias error (MBE). RMSE and MAE describe the average error and are often
considered better measures of model performance because RMSE is in the same units
as the original data and MAE is less sensitive to extreme values. MAPE calculates
overallfit using the averageof the sumof theabsolutevaluesexpressedasapercentage
while MBE is the average sum of the difference between the predicted and observed
values which allows interpretation of the direction of average bias. The R software
package was used for all statistical analysis (R Development Core Team, 2011).

3. Results

3.1. Observed dead foliar moisture contents

Theweather conditions at the site during both sampling periods
were fair and dry compared to historical averages (Table 1). Both
sampling periods had been rain-free for two days prior to sampling
with the last recorded 24-h rainfall of 0.5 mm and 2.0 mm for
sampling period 1 and 2 respectively. Sampling periods 1 and 2 had
ERCs and KBDIs that were above the historical averagewith the ERC



Table 2
Range in observational data obtained from the Hewinta RAWS over the course of
two diurnal sampling periods during the 2012 fire season.

Measure Units May 29e30 August 3e4

Air temperature �C �1.7 to 15.6 1.1e23.3
Relative humidity % 18e74 10e71
Solar radiation W m�2 0e1170 0e1194
10-h timelag fuel temperature �C �3.3 to 26.1 �1.1 to 34.4
Dew point temperature �C �9.6 to �1.5 �13.9 to 1.1
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on August 4 at the 90th percentile for that date. The ranges in
hourly weather observationswere typical for the high elevation site
during the early and middle portions of the fire season (Table 2).
Sampling period 1 had lower air temperatures and higher relative
humidities compared to period 2, while period 2 had the lowest
observed relative humidity of 10% on August 3.

The hourly data for dead FMC of red needles and the corre-
sponding observations of air temperature, relative humidity, and
solar radiation for both sample periods are shown in Fig.1. The dead
FMC displayed little variability in response to changes in relative
humidity with observed dead FMCs ranging from 6.9 to 14.5% with
the majority of observations occurring near the mean dead FMC of
9.7% (standard error 0.08%).
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Fig. 1. Diurnal changes in weather conditions and in dead foliar moisture content of red n
periods in May and August, 2012. The shaded area signifies the night-time period.
3.2. Evaluation of dead fuel moisture models

All existing models generally did a poor job of predicting the
dead FMC of red needles throughout the diurnal cycle for both
sampling periods (Table 3). The dead fuel moisture models under-
predicted dead FMC during the day and over-predicted at night
(Fig. 2). The modified NFDRS model had the best fit of the data in
terms of MAE and MAPE with an overall over-prediction bias while
the measured 10-h timelag fuel moisture values were the best fit in
terms of RMSE, also having a slight over-prediction bias (Table 3).
The modified NFDRS model had an over-prediction bias during
period 1 and under-prediction bias during period 2 (Fig. 2).

4. Discussion and conclusions

The small degree of variation observed in dead FMC over rela-
tively wide ranges in air temperature and relative humidity was
unexpected. Based on logical reasoning, previous attempts to
model crown fire potential in recently attacked stands assumed
that the FMC of red needles on attacked trees would be similar to
the moisture content of other fine, dead surface fuels. However, it is
now clear from the data reported here that this assumption is not
valid. Due to the lack of variation observed, the dead fuel moisture
models evaluated in this study did a poor job of predicting dead
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Table 3
Summary of statistics associated with the comparison of predicted fine dead fuel
moistures versus observed dead foliar moisture contents of red needles on moun-
tain pine beetle attacked lodgepole pine trees. The deviation statistics are root mean
square error (RMSE), mean absolute error (MAE), mean absolute percent error
(MAPE), and mean bias error (MBE).

Model Mean Range RMSE MAE MAPE (%) MBE

NFDRS, 1-h timelag 5.8 2.0e11.0 49.0 4.0 41.6 �3.88
Nelson (2000), 1-h

timelag
10.2 3.9e17.7 5.8 3.6 37.1 0.46

Van Wagner (1977a) 11.2 4.7e19.8 19.4 3.7 37.7 1.53
Rothermel (1983) 8.5 3.0e15.0 15.8 3.0 31.1 �1.25
Pook (1993) 13.5 7.0e22.0 47.6 4.5 45.3 3.76
Sharples et al. (2009) 8.9 3.9e15.4 9.7 3.1 32.4 �0.77
NFDRS modified 10.0 7.8e11.7 4.0 1.8 11.4 0.31
RAWS, 10-h timelag fuel

moisture indicator
stick

10.0 7.0e13.0 0.2 5.5 28.4 0.02

NFDRS, 10-h timelag 6.2 2.0e10.0 67.4 37.5 76.5 �7.53
Nelson (2000), 10-h

timelag
7.0 4.4e9.3 51.9 22.1 58.0 �5.80

Note: All units except MAPE are percent of oven-dry weight.
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FMC because theywere built on the assumption of timelags close to
one hour. Inspection of the existing literature revealed that time-
lags of needles from many of the conifers found in the western
United States can vary substantially from one hour and can be in
excess of 20 h when recently cast (Anderson, 1985) due to their low
moisture diffusivities (Anderson, 1990b).

The modification of an existing NFDRS fine fuel moisture model,
as recommended by Anderson (1985), improved model accuracy,
which suggests that the timelags associated with drying of red
stage needles may be quite long, assuming that the needles follow
an exponential drying function. Measurements of the 10-h timelag
fuel moisture indicator stick also showed promise for being able to
estimate dead FMC, but this requires measurements from a RAWS
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An understanding of the daily, diurnal FMC pattern found in red
needles of MPB-attacked trees is necessary to insure safe and
effective fire suppression operations. Although existing models of
crown fire initiation or rate of spread (e.g. VanWagner, 1977b) may
not be sensitive enough to distinguish significant changes in fire
behavior in relation to the diurnal changes in dead FMC found in
this study it is important that wildland firefighters and fire
behavior modelers are aware of this lack of variation. Fire sup-
pression operations personnel should not expect to see large in-
creases in dead FMC during typical night-time recovery in relative
humidity (Countryman, 1971). The low dead FMCs observed
throughout the day and night and their influence on ignitability
(Jolly et al., 2012; Page et al., 2012) would suggest that wider
windows of potential torching and crowning activity are possible
than would otherwise be expected.

Spotting potential into red tree crowns, which has been noted as
a significant issue during fire suppression operations (Stiger and
Infanger, 2011), is also affected by the lack of variability in dead
FMC. To aid in estimating the potential of spotting into red tree
crowns a probability of ignition (POI) table was released in late July
2012 (Hoyt and Jolly, 2012) for use with the National Wildfire
Coordinating Group (2010) incident pocket response guide
(IRPG). The POI table indicates that the FMC of green-attacked and
red needle foliage can be estimated using the fine dead fuel
moisture tables given in Rothermel (1983). The results of the pre-
sent study suggest that the dead FMC of lodgepole pine in the red
stage of MPB attack cannot be reliably estimated by this means,
thus making the use of the POI table questionable.

Further field sampling of dead FMC over the course of other
diurnal cycles is needed in order to further test the existing fuel
moisture models for their applicability and with a view to
Local time (hh:mm)

 foliar moisture content ± S.E.

t al. (2009)
 (1983)

-h timelag fuel moisture

FDRS

eetle attacked lodgepole pine trees during the red stage with the predicted values from
mel (1983) lookup tables, the Sharples et al. (2009) model, and the 10-h timelag fuel
e period.
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developing amore robust model. This would include under moister
conditions (i.e. relative humidities closer to 100% for extended
periods of time) and during warmer and drier atmospheric condi-
tions than captured to date.
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