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ABSTRACT 

Background. Wildfire simulation models are used to derive maps of burn probability (BP) based 
on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire 
risk assessments. Aims. Few studies have compared BP maps with real-world fires to evaluate 
their suitability for near-future risk assessment. Here, we evaluated a BP map for the contermi-
nous US based on the large fire simulation model FSim. Methods. We compared BP with 
observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes 
(‘pyromes’). We evaluated the distribution of burned areas across BP values, and compared 
burned area distributions among fire size classes. Key results. Across all pyromes, mean BP was 
moderately correlated with observed burned area. An average of 71% of burned area occurred in 
higher-BP classes, vs 79% expected. BP underpredicted burned area in the Mountain West, 
especially for extremely large fires. Conclusions. The FSim BP map was useful for estimating 
subsequent wildfire hazard, but may have underestimated burned areas where input data did not 
reflect recent climate change, vegetation change or human ignition patterns. Implications. Our 
evaluations indicate that caution is needed when relying on simulation-based BP maps to inform 
management decisions. Our results also highlight potential opportunities to improve model 
estimates.  

Keywords: burn probability, climate change, fire simulation models, FSim, model evaluation, 
pyromes, risk assessment, wildfire hazard, wildland fire. 

Introduction 

Wildfires pose many challenges to human health and safety, economic values, bio-
diversity and ecosystem services. Although wildfire is a natural component of many 
ecosystems and may be ecologically beneficial, extreme events threaten lives, cause 
billions of dollars in property loss, create the potential for post-fire hazards such as 
flooding and debris flows, and lead to widespread adverse public health effects from 
smoke exposure (Raymond et al. 2020; Vardoulakis et al. 2020; Bayham et al. 2022). 
Many parts of the world are experiencing increasingly large and destructive wildfires, 
including the unprecedented events of the 2019–2020 season in eastern Australia (Boer 
et al. 2020), the 2020 and 2021 seasons in western North America (Higuera and 
Abatzoglou 2021) and the 2022 season in Mediterranean Europe (Rodrigues et al. 
2023). These extreme events are expected to become more frequent and destructive as 
a result of climate change and expansion of the wildland–urban interface (Senande- 
Rivera et al. 2022; Schug et al. 2023). Given these challenges, government agencies, 
conservation organisations and communities need information and tools to assess and 
manage wildfire risk (Calkin et al. 2014). 

Wildfire risk assessments are valuable tools for determining where communities and 
other values are most likely to be exposed to wildfire, and for planning adaptations 
accordingly (Haas et al. 2013; Calkin et al. 2014). According to the risk assessment 
framework developed by the US Forest Service, risk is defined quantitatively by combining 
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wildfire hazard (likelihood of fire occurrence and likely inten-
sity) and resource vulnerability, using response functions to 
link wildfire of a given intensity to change in value for a 
particular resource (Scott et al. 2013). Landscape-scale risk 
maps are then used to prioritise mitigation actions at local to 
national scales, including allocating suppression resources, 
implementing fuel treatments and developing community 
response plans (Schoennagel et al. 2017; Murray et al. 
2023). Risk maps also inform communities’ perceptions of 
wildfire danger and can thus motivate homeowners to invest 
in home-hardening actions that can reduce building loss 
(McFarlane et al. 2011). 

Simulation models are commonly used to estimate the 
hazard components of wildfire risk (Oliveira et al. 2021). 
Models such as FlamMap (Finney 2006), FSim (Finney et al. 
2011), or Burn-P3 (Parisien et al. 2005) are based on empiri-
cal or semi-empirical fire spread models such as FARSITE 
(Finney 1998) and the Minimum Travel Time algorithm 
(MTT; Finney 2002). These algorithms predict the growth 
of individual wildfire perimeters based on ignition locations, 
fuels, topography and weather conditions, including wind 
speed and direction. Simulation models are used to generate 
burn probability (BP) maps using a Monte Carlo approach in 
which individual wildfire perimeters are generated across 
landscapes over several thousands of iterations, representing 
hypothetical ‘fire years’ with varying ignition locations and 
weather scenarios. BP is derived by dividing the number of 
times a pixel burns in the simulation by the total number of 
iterations. BP is therefore interpreted as the probability that a 
pixel will burn in any given year. This simulation modelling 
approach has been used in several national-scale risk assess-
ments, including for the US (using FSim; US Department of 
Agriculture et al. 2020), Israel (using FSim; Carmel et al. 
2009), southern Europe (using MTT; Alcasena et al. 2021) 
and Canada (using Burn-P3; Parisien et al. 2005). 

Despite increasing reliance on simulation models in wild-
fire risk assessments, there have been few efforts to deter-
mine whether their outputs align with observed wildfire 
perimeters at spatial and temporal scales suitable for 
informing management actions. Past studies have found 
that observed burned areas and fire size distributions 
match simulations well when aggregated at fairly coarse 
scales in the conterminous US (Finney et al. 2011; Ager 
et al. 2021). Additional studies have evaluated BP maps at 
small regional scales by comparing perimeters for individual 
fires with simulation-derived BP values, and determined 
that burned areas corresponded well to high-BP areas (Paz 
et al. 2011; Alcasena et al. 2015; Thompson et al. 2016). In 
contrast, Beverly and McLoughlin (2019) compared BP 
maps generated with the Burn-P3 model with 138 observed 
fires over several years in several regions of Alberta, 
Canada, and found that a high proportion of burned area 
occurred in lower-BP areas. However, Parisien et al. (2020) 
argued that the analysis by Beverly and McLoughlin (2019) 
was misleading because observed fires over a period of only 

a few years cannot capture the full range of variability 
represented by BP maps that are based on simulations of 
thousands of hypothetical fire years. This is indeed an 
important consideration when evaluating BP maps. 
Wildfire is a highly stochastic process, and burned areas 
may vary greatly from year to year depending on weather 
conditions and ignition locations. It is therefore not possible to 
reliably evaluate maps at very fine scales (i.e. on a per-pixel 
basis) using available fire records that only span a few decades 
or less. However, evaluating patterns in wildfire burned area 
on an aggregate scale, across large spatial extents, can indicate 
whether burned areas generally occur in areas mapped as 
having higher BP or not. Such evaluations are important for 
determining the usefulness of BP maps in informing actions to 
mitigate near-term wildfire risk. 

As with any model, evaluations of wildfire simulation 
models can help users understand their strengths and limi-
tations and point to opportunities for improvement. 
Limitations may lie either with model input data or from 
their underlying empirical spread equations. Wildfire simu-
lation models have been critiqued for lack of field validation 
of their predictions of spread rates and crown fire probabili-
ties (Alexander and Cruz 2013), as well as their representa-
tions of spread processes in wildland–urban interface fuels 
(Mell et al. 2010). Furthermore, simulations based on his-
torical weather ranges may have limited ability to capture 
current and near-future burning patterns in regions of the 
western US where wildfire activity is rapidly shifting owing 
to climate change (Adams 2013; Abatzoglou et al. 2021;  
Iglesias et al. 2022). BP maps based on weather ranges 
and burn patterns seen in the historical record may therefore 
have limited utility to guide management under future con-
ditions. Additionally, fuels are changing rapidly in some 
regions affected by large-scale forest mortality (Anderegg 
et al. 2015) or spread of invasive grasses (Fusco et al. 
2019), and simulations may therefore be limited by out-of- 
date fuel maps. Finally, simple ignition density surfaces used 
in simulations may not capture fine-scale human ignition 
patterns that may be important predictors of wildfire occur-
rence (Bar Massada et al. 2011). Identifying where observed 
wildfires most differ from BP maps can help to identify how 
any these factors may be improved to result in more realistic 
simulations. 

In this study, we evaluated an FSim-based BP map for the 
conterminous US. We focused on the BP output because BP 
can be readily compared with mapped wildfire perimeters, 
whereas there are no readily available data to evaluate 
FSim’s intensity outputs (i.e. flame length probability). We 
compared BP values with observed wildfires over a 7-year 
period after the period of model calibration (a dataset span-
ning 7 years; n = 3112 fires). We replicated our evaluations 
across 128 sub-regions representing similar fuel types and 
fire regimes (‘pyromes’). Our analysis consisted of four com-
ponents: (1) comparing predicted and observed percentages 
of mean annual burned area across pyromes; (2) comparing 
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expected with observed proportions of burned area among 
equal-area BP classes within pyromes; (3) assessing how 
results for the western US were affected by extremely 
large fires by assessing differences in proportions of 
observed burned area per BP class among three fire size 
classes; and (4) comparing results based on an updated BP 
map using more recent calibration data. 

Methods 

Data 

The US Department of Agriculture Forest Service provides a 
publicly available FSim-based BP map for the conterminous 
US at 270 m resolution (Fig. 1a; Short et al. 2020b). This 
version of the map was released in 2020 and was based on 
2014 LANDFIRE fuels data (Rollins 2009), an ignition density 
surface based on wildfire point locations >40 ha from 1992 
to 2015 from the Fire Program Analysis Fire Occurrence 
Database (Short 2017) and historical weather from 1972 to 
2012 (Abatzoglou 2013). The FSim model used to derive this 
map generates wildfire perimeters for every pixel across the 
conterminous US that contains burnable fuels according to the 
LANDFIRE fuels map. Pixels that do not burn in any simula-
tion runs are assigned nominal values of 0.00001. Pixels with 
developed, agricultural, water, or other non-vegetated land 
cover types are considered ‘non-burnable’ in the FSim runs 

and are assigned values of zero. We set these zero values to 
null to exclude them from our analyses. 

Observed wildfire perimeters from 2016 to 2021 were 
obtained from the Monitoring Trends in Burn Severity 
(MTBS) dataset (Eidenshink et al. 2007), and additional 
perimeters for 2022 wildfires were obtained from the 
National Interagency Fire Center (NIFC; https://data-nifc. 
opendata.arcgis.com/maps/wfigs-interagency-fire-perimeters; 
accessed 9 December 2022). The MTBS data only include fires 
larger than 404 ha in the western US and 202 ha in the eastern 
US. We removed fires that were smaller than this threshold 
from the NIFC data prior to merging the two datasets. We 
additionally removed prescribed fires from both datasets. For 
the MTBS data, we also removed wildfires with ‘unknown’ 
incident type, as many of these may be undocumented pre-
scribed fires. The final combined MTBS and NIFC dataset 
consisted of 3112 fires and 163,914 km2 burned area (Fig. 1b). 

Pyromes are ecologically similar regions with relatively 
homogeneous fire regimes (Fig. 1b; Short et al. 2020a). 
These units were developed by the USDA Forest Service to 
define areas of homogeneous fire activity based on geospa-
tial clustering of observed wildfires, and were derived 
directly from FSim outputs. We selected these as our units 
of analysis because they are large enough to encompass a 
large range of BP values and multiple wildfire perimeters, 
and to display patterns in model performance in an inter-
pretable way, while also being fine enough to allow for 
sufficient replication across the entire study area (mean 
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Fig. 1. (a) The USDA Forest Service’s 
FSim burn probability (BP) map for the 
conterminous US, based on 2014 LANDF-
IRE fuels, 1972–2012 weather ranges and 
observed wildfires from 1992 to 2015. (b) 
Wildfire perimeters from 2016 to 2022 
used to evaluate the BP map, with 
Omernik Level 1 ecoregions and pyrome 
boundaries indicated. M.W.C.F, Marine 
West Coast Forest; M.C., Mediterranean 
California; N.F.M., Northwestern Forested 
Mountains; N.A.D., North American 
Deserts; S.S.H., Southern Semi-Arid 
Highlands; T.S., Temperate Sierras; G.P., 
Great Plains; N.F., Northern Forests; 
E.T.F., Eastern Temperate Forests; T.W.F., 
Tropical Wet Forests. (c) Observed and 
modelled mean annual burned areas per 
ecoregion, as a proportion of total LAN-
DFIRE burnable area.    
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size 60,857 km2, n = 128). We obtained pyrome boundaries 
from the USDA Forest Service Research Data Archive (https:// 
www.fs.usda.gov/rds/archive/catalog/RDS-2020-0020). 

The conterminous US encompasses a wide range of fuels, 
ignition sources and weather patterns, and we therefore 
grouped our analyses by Omernik Level 1 ecoregions 
(Fig. 1b; Omernik 1987). We simplified these ecoregions some-
what by combining the Southern Semi-Arid Highlands with 
the Temperate Sierras. Pyromes were partially derived from 
Level 4 ecoregions, but did not perfectly overlap. We 
assigned each pyrome to the dominant Level 1 ecoregion 
by determining which ecoregion had the greatest degree of 
overlap with LANDFIRE burnable area (Supplementary 
Fig. S1, Supplementary Table S1). 

Expected and observed burned areas by pyrome 

The first component of our analysis was to evaluate relation-
ships between expected and observed mean annual burned 
areas by pyrome. We tabulated observed burned area by year 
to calculate mean annual burned areas for each pyrome. We 
determined 95% confidence intervals for mean annual burned 
areas using a sieve bootstrap, a non-parametric method that 
accounts for temporal autocorrelation and effects of large 
outlier years (Bühlmann 1997). We then divided these values 
by the total burnable area (non-zero pixels) to derive propor-
tions of observed burned area. Expected annual burned area 
proportions were determined by calculating the mean of all 
burnable BP pixels within each pyrome. We evaluated the 
significance of expected to observed correlations used a zero- 
inflated generalised additive model with a beta response 
distribution. Regressions were split by major geographic 
region (eastern and western US), wherein the western US 
was defined as the Marine West Coast Forest, Mediterranean 
California, Northwestern Forested Mountains, North 
American Deserts, and Southern Semi-Arid Highlands and 
Temperate Sierras ecoregions, and the eastern US as the 
Great Plains, Northern Forests, Eastern Temperate Forests 
and Tropical Wet Forests ecoregions (Fig. 1b). 

Burned area proportions by BP class 

We assessed the BP map within individual pyromes by com-
paring expected with observed proportions of burned area 
along a gradient of BP classes (Fig. 2). We defined BP classes 
independently for each pyrome by dividing pixel values 
(excluding zero values) into equal-area quintiles, resulting in 
Low, Low–Medium, Medium, Medium–High and High classes 
of wildfire likelihood. We selected five classes because we 
determined this to be the best number of classes for differen-
tiating fire likelihood across landscapes while also allowing 
interpretable results. However, we compared proportions of 
area in the lower-BP classes with those obtained using three, 
four and six classes, and determined that they were similar 
(Supplementary Fig. S2). Our analysis methods are therefore 
robust to the number of classes selected. 

Within each pyrome, we determined the expected pro-
portions of burned area per BP class i (E(Pi)) by summing all 
BP pixel values within the areas defined by class i, then 
dividing by the sum of all BP pixels (BPtotal; Fig. 2c, d,  
Eqn 1). We calculated observed proportions per BP class 
by tabulating all pixels overlapping 2016–2022 wildfire 
perimeters by year, thereby accounting for pixels that 
burned in multiple years. We then calculated means of 
expected and observed proportions per pyrome by Level 1 
ecoregion, for the eastern and western US, and for the entire 
conterminous US. Because proportional data are constrained 
so that proportions sum to 1, the data must be transformed 
to Euclidean space to find the means. We used the additive 
log-ratio transformation (Aitchison 1986) to find the centre 
of transformed proportions for all pyromes for each geo-
graphic division. We derived mean proportions by taking 
the inverse additive log-ratio of each centre of transformed 
proportions. 
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We used Aitchison’s D metric for proportional data 
(Aitchison 1992) to assess differences between observed 
and expected distributions of burned area per BP class for 
each pyrome. However, this method results in similar 
D values for pyromes where burned area is greater than 
expected in higher-BP classes to pyromes where burned 
area was greater than expected in lower-BP classes. For 
our evaluations, we were more concerned with identifying 
areas where more burned area occurred in lower-BP classes, 
as this would indicate potential for models to underestimate 
wildfire risk. We therefore split pyromes according to 
whether more burned area than expected fell into the two 
lower BP classes (Low and Low-Med), or into the higher-BP 
classes (Med, Med-High and High). 

Fire size class comparison 

In the western US (defined here as the Marine West Coast 
Forest, Mediterranean California, Northwestern Forested 
Mountains, North American Deserts, Southern Semi-Arid 
Highlands and Temperate Sierras ecoregions), wildfire 
burned area is often dominated by extremely large events. 
We evaluated the effect of extremely large wildfire events on 
our assessments of burned area proportions per BP class, as 
we hypothesised that these events are more likely to occur 
under extreme weather conditions and therefore may result 
in greater burned area in low-probability areas. We based 
our fire size classes on the 95th and 99th percentile breaks 
for all 2016–2022 wildfire perimeters included in our assess-
ment, limited to ecoregions of the western US. We split the 
burned area perimeters into our three fire size classes 
(<95th, 95th–99th and >99th percentiles) to determine 
proportions of burned area per BP class for each pyrome. 
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We then determined mean proportions for all pyromes for 
each size class. 

BP map version comparison 

We focused on evaluating the version of the BP map released 
in 2020 and based on 2014 LANDFIRE fuels because this 
version has been widely implemented in regional, state and 
national risk assessment products in the US (Hawbaker et al. 
2023), and because the vintage of the fuels map and histori-
cal calibration data allowed for 7 years of subsequent 
observed fires for evaluation. However, an update to the 
map was released in late 2023 (Dillon et al. 2023). This 
newer version is based on observed wildfires from 1992 to 
2020, a 2020 LANDFIRE fuels map and a more recent 
window of historical weather (2006–2020; Supplementary 
Fig. S3). We did not perform a thorough evaluation of the 
2023 release of the USDA Forest Service’s BP map, owing to 
limitations of only 2 years of evaluation data subsequent to 
the modelling period (2021–2022). Although it is desirable 
to perform evaluations using data that are independent from 

the calibration data, it is also impossible to evaluate fires 
that occurred prior to the 2020 LANDFIRE fuels vintage map 
because the fuels map reflects vegetation changes from these 
past burned areas. However, we used these 2 years of 
observed fire perimeters to compare burned area propor-
tions by BP class between the two map versions in order to 
evaluate differences resulting from a more recent historical 
weather range and fuels map. We hereafter refer to the two 
different versions based on the LANDFIRE fuels vintage as 
‘LF2014’ and ‘LF2020’. 

Results 

Wildfires occurred in 114 of 128 pyromes from 2016 
to 2022. Mean annual burned area for this period 
was 23,416 km2 (±10,586 km2 s.d.) compared with 
14,235 km2 (±9158 km2) for the 1992–2015 calibration 
period. At the ecoregion level, the mean annual percentage 
of burnable area affected ranged from 0.01% (in the 
Northern Forests) to 1.97% (in the Tropical Wet Forests). 
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Fig. 2. Diagram of methodology used to define burn probability classes and calculate expected 
proportions of burned area based on FSim burn probabilities (BP). (a) BP map cropped for an 
example pyrome (Far Southern Rockies). (b) Map of five equal-area classes based on quantile breaks 
of BP values. (c) Histogram of BP values for the Far Southern Rockies with class breaks (coloured 
vertical lines). BP values were summed within each class group, then divided by the total to obtain 
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Both expected and observed proportions of burned area from 
2016 to 2022 were greatest for the Tropical Wet Forests 
ecoregion (consisting of only one pyrome, the Southern 
Florida Coastal Plain/Everglades) and the western ecore-
gions (Fig. 1c). Observed mean annual burned areas matched 
expected burned areas well at the ecoregion level, but in 
both the Northwestern Forested Mountains and the Southern 
Semi-Arid Highlands, the 95% confidence interval for 
observed mean annual burned area exceeded the expected 
value (Fig. 1c). Mean observed burned area was approxi-
mately double the expected area in the Northwestern 
Forested Mountains (1.2% observed vs 0.57% expected). 

Expected and observed burned areas by pyrome 

In individual pyromes, observed mean annual percentage 
area burned was 0.56% on average (excluding pyromes with 
no area burned). The maximum mean annual percentage 
area burned was 4.85% in the Klamath Mountains. Expected 
and observed burned area was significantly positively cor-
related when aggregated by pyrome (R2 = 0.30, P < 0.001 
for the western US; R2 = 0.23, P < 0.001 for the eastern US). 
However, there were notable outliers in the western US in 
which several pyromes had greater burned area than other 
pyromes with similar BP values (Fig. 3). These pyromes 
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were all located in the southern Cascade Range, northern 
California coast and southern Sierra Nevada regions. All of 
these regions experienced historic wildfire seasons related to 
extreme heat and drought throughout the 2016–2022 eva-
luation period, including extreme events such as the 2018 
August Complex and Camp fires in northern California, 
multiple large wildfires in the western Cascade Range dur-
ing the 2020 season (Rosen et al. 2022), and the 2021 Dixie 
fire in the northern Sierra Nevada and southern Cascade 
Range. Outlying pyromes were not as notable in the eastern 
US as in the western US (Fig. 3). Two pyromes – the 
Canadian/Cimarron Breaks and High Plains and the 
Rolling Red Hills and Prairie Tableland, which are both 
located in the Oklahoma/Texas panhandle region of the 
southern Great Plains – had slightly greater burned areas 

than other pyromes with similar BP values. BP slightly over-
estimated burned area in the Southern Florida Coastal 
Plain/Everglades, the pyrome with greatest burned area in 
the eastern US, and in several pyromes in the Great Plains 
and Northern Forests. 

Burned area proportions by BP class 

Observed proportions of burned area among our five classes 
were similar to the expected proportions when averaged 
across all 114 pyromes in the conterminous US that experi-
enced wildfires from 2016 to 2022 (Fig. 4a, Table 1). The 
mean proportion of observed burned area in the Med-High 
or High-BP classes was approximately two-thirds (67.8%), 
greatly exceeding the ~40% that would be expected if 
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burned area were occurring randomly across BP classes. 
Burned area proportions across BP classes were highly vari-
able from year to year, but in most pyromes, expected 
burned areas for all BP classes were within a 95% confi-
dence interval of observed means (Supplementary Fig. S4). 
However, the mean observed proportion in the High-BP 
class was substantially lower than expected (40.0% vs 
53.0%) across all pyromes, whereas the mean proportion 
in the lower-BP classes (Low to Med) was greater than 
expected (32.2% vs 22.6%). Results were similar for the 
western and eastern US, with greater observed proportions 
in Low to Med-BP classes than expected (Fig. 4). Observed 
proportion in the Low to Med-BP classes in the western US 
was 34.4%, compared with 24.5% expected, and 30.0% in 
the eastern US compared with 21.0% expected. 

When comparing observed burned area proportions with 
their expected proportions by BP class, 79 of 114 pyromes, 
or 69.3%, had greater burned area than expected in the Low 
to Med-BP classes. Pyromes with the greatest difference 
between observed and expected burned area proportions, 
as measured by Aitchison’s D, were concentrated in the 
Cascade Range/northern Sierra Nevada region, the 
Northern Rockies, Great Basin, southern Rocky Mountains, 
central and southern Great Plains, southern Appalachian 
Mountains, coastal northeastern US and Florida Everglades 
(Fig. 4b). Conversely, pyromes where a greater burned area 
occurred in the higher-BP classes than expected were con-
centrated in the desert Southwest, lower Mississippi River 
valley and Great Lakes region. 

Proportions of burned area among BP classes were highly 
variable across individual pyromes (Figs 5, 6). Seventy-four 
of 114 pyromes had >50% of their burned area occurring in 
the two highest BP classes (Med-High or High), and 30 

pyromes had >50% of their burned area in the High-BP 
class. Focusing on the 28 pyromes with the greatest burned 
areas (top 25%, >0.80% mean annual area burned), fewer 
than half of these (n = 11) had >50% of burned area in 
Med-High or High-BP classes. Generally, pyromes with 
higher amounts of burned area in the lower-BP classes 
were in the Northwestern Forested Mountains ecoregion 
(Fig. 5). Notably, the Southern Cascades, Northeast 
Cascades, Northern Sierran Foothills and Tuscan Flows, 
Southern Rockies Front Range and Southern Rockies 
(Upper Colorado River Basin) experienced large wildfire 
burned areas (>100 km2 burned annually, on average) 
and had more than 20% of their burned areas occur in the 
Low-BP class (Fig. 5). Observed burned areas did not neces-
sarily exceed expected values for higher-BP classes in these 
pyromes, but did for the low-BP classes (including 95% 
confidence interval ranges; see Supplementary material). 
Pyromes in Mediterranean California also had relatively 
high burned areas in lower-BP classes (~40% for most 
pyromes, Central California Valley excluded; Fig. 5). 
However, it is important to note that this ecoregion had, 
on average, lower expected proportions of burned area in 
the high-BP classes than other ecoregions (Table 1). This is 
because BP values in these pyromes are high overall and 
there is therefore less differentiation among BP classes. 

Effects of extremely large fires 

We split fires in the western US into size classes representing 
the lower 95th, 95th–99th and upper 99th percentiles, 
resulting in groups of 1723, 109 and 26 events, respectively. 
Eleven of the 26 fires in the 99th percentile occurred in the 
summer and fall (autumn) of 2020. The top 5% of largest 

Table 1. Means of observed burned area proportions, compared with means of expected proportions (in parentheses) per burn probability 
class across all pyromes, aggregated by Level 1 ecoregions, for the western and eastern US, and for the entire conterminous US.         

Ecoregion/Region No. of pyromes A Low Low-Med Med Med-High High B

Marine West Coast Forest 2 0.04 (0.05) 0.03 (0.06) 0.08 (0.14) 0.20 (0.20) 0.66 (0.55)  

Mediterranean California 6 0.05 (0.06) 0.13 (0.12) 0.19 (0.18) 0.24 (0.25) 0.38 (0.39)  

Northwestern Forested Mountains 21 0.10 (0.03) 0.16 (0.09) 0.21 (0.15) 0.24 (0.24) 0.28 (0.50)  

North American Deserts 23 0.02 (0.02) 0.07 (0.06) 0.17 (0.12) 0.26 (0.23) 0.48 (0.57)  

Southern Semi-Arid Highlands and Temperate Sierras 3 0.13 (0.05) 0.14 (0.10) 0.14 (0.16) 0.22 (0.24) 0.36 (0.45) 

All Western US 55 0.05 (0.03) 0.11 (0.08) 0.19 (0.14) 0.26 (0.24) 0.40 (0.52)  

Great Plains 29 0.05 (0.03) 0.11 (0.09) 0.17 (0.16) 0.31 (0.25) 0.36 (0.48)  

Northern Forests 6 0.01 (0.02) 0.09 (0.05) 0.10 (0.12) 0.28 (0.24) 0.52 (0.56)  

Eastern Temperate Forests 23 0.05 (0.02) 0.08 (0.03) 0.19 (0.10) 0.36 (0.24) 0.32 (0.61)  

Tropical Wet Forests 1 0.04 (0.02) 0.25 (0.09) 0.31 (0.17) 0.25 (0.27) 0.15 (0.46) 

All Eastern US 59 0.04 (0.03) 0.10 (0.05) 0.17 (0.13) 0.33 (0.25) 0.36 (0.54) 

All Conterminous US 114 0.04 (0.03) 0.10 (0.06) 0.18 (0.14) 0.29 (0.24) 0.38 (0.53) 

ACounts include pyromes with non-zero burned area from 2016 to 2022. 
BRows may not sum exactly to 1.00 due to rounding.  
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fires made up 59.6% of burned area in the western US from 
2016 to 2022, whereas the top 1% made up 27.0%. 
Restricting our analyses to pyromes where all fire size 
classes occurred resulted in 25 pyromes spanning all 
five western US ecoregions. Proportions did not differ sub-
stantially between the <95th percentile events and the 
95th–99th percentile, but the most extreme 99th percentile 
events had considerably lower proportions of burned area 
occurring in the High-BP class and greater proportions in the 
Low-Med BP classes (Fig. 7a). Although approximately 
three-quarters of the burned area in 0–95th percentile 
events was in the two High-BP classes, this was less than 
half of the burned area for 99th percentile events. 

Only a few pyromes had notable differences in the pro-
portions of Low-BP area burned by fires of different size 
classes (Supplementary Fig. S5). These were primarily 
located in mountain foothill regions of the Cascade Range, 
Sierra Nevada and Rocky Mountains (e.g. the Middle 
Cascades, Eastern Cascades Slopes and Foothills, Idaho 
Batholith, Northern Sierran Foothills and Tuscan Flows, 
Southern Sierran and Tehachapi Foothills, Southern Sierra 
Nevada and Southern Rockies (Upper Colorado River Basin) 

pyromes). All of these except for the Idaho Batholith were 
affected by major wildfires in the 2020 and 2021 seasons, 
including the North Complex, Bootleg, Creek and East 
Troublesome fires. Three of these example areas are illus-
trated in Fig. 7b, indicating where smaller <95th percentile 
fires primarily burned in the higher-BP classes whereas the 
extreme events burned either primarily in low-BP areas (as 
in the Southern Rockies pyrome), or a mix of low- and high- 
BP areas. In most cases, these low-BP areas corresponded to 
higher-elevation forests. However, some pyromes had high 
proportions of burned area in low-BP classes for the smaller 
fire size classes as well (e.g. the Marine Northwest Coast 
Forest, North Central California Foothills and Coastal 
Mountains, Klamath Mountains, Southern Cascades and 
Southern Rockies Front Range; Supplementary Fig. S5). 

Differences in BP map versions 

Performing evaluations based on only wildfire perimeters 
from 2021 to 2022 reduced the number of pyromes consid-
ered from 114 to 101. When we split pyromes into western 
and eastern US ecoregions, this resulted in 48 pyromes with 
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burned area in the west and 53 pyromes in the east. For both 
the western and eastern US, the more recent LF2020 version 
resulted in greater proportions of burned area falling in the 
High-BP class (29.1% vs 47.6% in the West; 36.1% vs 44.0% 
in the East; Fig. 8). Furthermore, substantially lower burned 
area occurred in the Low-BP class in the western US based on 
LF2020 classes (7.9% vs 1.8%). Pyromes in Mediterranean 
California, the Northwestern Forested Mountains, and the 
Southern Semi-Arid Highlands and Temperate Sierras partic-
ularly had much lower proportions of burned area in the 
lower-BP classes compared with results for the LF2014 ver-
sion (Supplementary Fig. S6). However, results did not simi-
larly change in the Eastern Temperate Forests ecoregion 
(Supplementary Fig. S7). 

Discussion 

Our assessment of an FSim-based BP map for the contermi-
nous US revealed that, for most regions, BP could reliably 
estimate mean annual burned areas at coarse scales (i.e. 
pyromes and ecoregions). Furthermore, wildfires burned 
preferentially in higher-BP classes within most pyromes. 
However, a large number of pyromes (79 out of 114) had 
greater burned area in lower-BP classes than expected. 
Notably, several pyromes in the forested Mountain West 
burned extensively from 2016 to 2022 and had more than 
half the burned area occur in Low to Medium-BP classes. 
Although our results suggest that FSim-derived BP values 
are generally useful for determining where wildfire is most 

likely to occur, the fairly high proportions of burned area 
that occurred in low-BP areas indicate that there are many 
areas where the FSim-based BP map underestimated burn 
probability. Our evaluation methods could not determine 
the causes for these discrepancies, but it is reasonable to 
assume that areas that historically burned infrequently may 
not be well-represented in simulations based on recent wild-
fire activity. This underscores potential limitations of the BP 
map in estimating areas most at risk from wildfires in the 
coming years and decades. These limitations are critical to 
understand when implementing risk assessments with wild-
fire likelihood estimates based on simulation modelling. 

Pyromes where high-BP areas best matched observed 
burned areas were concentrated in the desert Southwest, 
lower Mississippi River valley and Great Lakes regions. 
Generally, these are regions where wildfire activity is limited 
by the availability of flammable fuels, owing to limited vege-
tation growth in an arid climate (Mueller et al. 2020), frag-
mentation of forest fuels by agriculture and development 
(Poulos 2015), or small remnant patches of fire-prone conifer 
forests within largely mesic forest types (Nowacki and Abrams 
2008). This result suggests that FSim may be best-suited to 
estimate burn probability in landscapes where there are large 
variations in fuel availability. However, there were larger 
differences between expected and observed proportions of 
burned area among high- and low-BP areas in pyromes of 
the Mountain West, Great Plains and Southeast. These may 
indicate that the BP map is most limited in landscapes where 
fuels are more consistently abundant, and where fire activity 
is driven more by variations in weather and ignition patterns. 
Finally, observed burned areas corresponded well with 
expected areas in Mediterranean California, but it is important 
to note here that the BP map predicted smaller differences in 
burned areas among BP classes for these pyromes compared 
with other ecoregions. This is because BP values in this region 
are high overall. Burned area occurred in nearly equal pro-
portions among classes in many pyromes in southern 
California, indicating that here modelled BP was only slightly 
different than random predictions. 

Many pyromes with high burned areas in low-BP classes 
were in the forested Mountain West, notably in the Cascade 
Range, northern Sierra Nevada, northern California coast, 
Sierra Nevada foothills and southern Rocky Mountains. In 
these pyromes, lower-BP areas often corresponded to 
higher-elevation forests. Furthermore, much of the burned 
area in these regions occurred during extreme large events 
in the summer and fall of 2020, when extreme high temper-
atures and low atmospheric moisture led to the largest wild-
fire season on record in the western US (Higuera and 
Abatzoglou 2021). Although the inclusion of extreme fire 
years such as 2020 (as well as 2017, 2018 and 2021, which 
had similarly high burned areas across the US) may be seen 
as biasing our evaluations, wildfire activity in these years is 
likely not an anomaly, but indicative of near-future condi-
tions. Increases in wildfire size and mean area burned in the 

0.00

LF2014 LF2020 LF2014 LF2020

0.25

0.50

M
ea

n 
pr

op
or

tio
n 

of
 b

ur
ne

d 
ar

ea

0.75

1.00

Western US (n = 48) Eastern US (n = 53)

BP class

Low
Low-med
Med
Med-high
High

Fig. 8. Bar plots comparing mean proportions of observed burned 
area (2021–2022) by burn probability (BP) class across all pyromes in 
the conterminous US based on two different versions of the USDA 
Forest Service’s BP map: LF2014,  version based on LANDFIRE 2014 
fuels; LF2020,  version based on LANDFIRE 2020 fuels. The LF2020 
version also uses a more recent range of historical weather 
(2006–2020) and observed wildfires (1992–2020). Means are split by 
major geographic region according to Omernik Level 1 ecoregions 
(Western US, Marine West Coast Forest, Mediterranean California, 
Northwestern Forested Mountains, North American Deserts, 
Southern Semi-Arid Highlands and Temperate Sierras; Eastern US, 
Great Plains, Northern Forests, Eastern Temperate Forests and 
Tropical Wet Forests).   

A. R. Carlson et al. International Journal of Wildland Fire 34 (2025) WF23196 

12 



western US have been well-documented since ~2000, and 
although not every year will be as extreme as 2020, extreme 
conditions are likely to become more frequent with continued 
warming (Abatzoglou et al. 2021; Iglesias et al. 2022). 
Increased warming and drought may particularly increase 
wildfire likelihood in moist forests where fire has been his-
torically climate-limited (Sibold and Veblen 2006; Halofsky 
et al. 2020; Alizadeh et al. 2021). Large fires are not 
unprecedented in many of these regions (e.g. in the western 
Cascade Range; Reilly et al. 2022), but if these events are not 
included in calibration records, then FSim will be constrained 
from reproducing these types of extreme fire seasons with 
frequency when using weather simulations drawn from his-
torical ranges. Our evaluations therefore indicate that simu-
lation models based on historical weather and calibrated to 
fires since the 1990s have limited ability to estimate future 
wildfire patterns under dynamic weather conditions. 

Further discrepancies between observed burned areas and 
FSim BP estimates may result from a fuels layer that does not 
reflect recent changes. The BP map used in our evaluation was 
based on 2014 LANDFIRE fuels, and although this is recent 
regarding our observed period of 2016–2022, it is possible that 
localised vegetation changes in some areas affected wildfire 
patterns significantly enough to affect our results. For exam-
ple, extensive forest mortality occurred in the western US over 
this period as a result of fires, insect outbreaks and drought 
(Anderegg et al. 2015). Furthermore, the continued spread of 
invasive grasses such as cheatgrass (Bromus tectorum) and 
buffelgrass (Cenchrus ciliaris) have increased wildfire proba-
bility throughout the Southwest and Great Basin (Davis et al. 
2019; Fusco et al. 2019). Invasive grass spread may explain 
greater-than-expected burned areas in low-BP classes through-
out the Great Basin. The 2020 Dome fire in Joshua Tree 
National Park, in the Eastern Mojave Basin and Range pyrome, 
and the 2019 Sheep fire near Idaho National Laboratory, in the 
Snake River Plain pyrome, both burned largely in lower-BP 
areas and were fuelled by recent increases in cheatgrass cover 
(Menser 2020; McDermott 2024). BP maps may therefore be 
sensitive to land cover changes such as forest mortality, inva-
sive species spread and development in the wildland–urban 
interface, and frequent updates based on the most recent data 
can improve their usefulness. 

In the eastern US, we observed the greatest burned area in 
low-BP areas in the southern Great Plains and southern 
Appalachian Mountains regions. Fire regimes in these regions 
are strongly driven by human ignitions, in contrast to the 
western US, where many of the largest fires are started by 
lightning strikes in remote areas (Prestemon et al. 2002; Balch 
et al. 2017). Here, a key limitation of the FSim BP map may 
by its simple weighted density surface estimating ignition 
probabilities based on historical observations of fires larger 
than 40.5 ha. This method may not necessarily capture fine- 
scale landscape features that explain ignition patterns (e.g. 
roads, powerlines, railroads, presence of the wildland–urban 
interface; Bar Massada et al. 2013; Radeloff et al. 2018; Chen 

and Jin 2022). Furthermore, probabilities of ignitions escap-
ing and growing into large fires are influenced by factors such 
as road accessibility, topography, proximity to development 
and land management class (Rodrigues et al. 2020). It is also 
important to note that our evaluations using MTBS data only 
included observed fires larger than 202 ha, representing only 
a small number of fires that occur in the eastern US. The 
coarse scale of FSim modelling at a national scale may there-
fore present an additional limitation for understanding finer- 
scale burned area patterns. 

We were only able to evaluate the more recent version of 
the US Forest Service’s BP map using 2 years of wildfire 
observations, and therefore our confidence in capturing the 
variability of wildfire occurrence is low. However, our com-
parisons of observed burned area proportions by BP classes 
between the two versions indicate improvements in model 
accuracy. Basing evaluations on the more recent map subs-
tantially reduced proportions of burned area that occurred 
in low-BP classes in the western US, and particularly in the 
Northwestern Forested Mountains ecoregion. Primary differ-
ences between the two versions of the map were (1) weather 
scenarios drawn from a more recent historical range 
(2006–2020 vs 1972–2012), and (2) a more recent fuels 
map (2020 vs 2014). Our analysis methods unfortunately 
do not allow us to attribute model improvements to either of 
these factors; that would require a true experimental design 
matrix. However, it is quite likely that weather ranges for 
the more recent period more accurately reflect the potential 
for large wildfire occurrence in places such as the Pacific 
Northwest and Rocky Mountains, in addition to reflecting 
more current fuels. This highlights the importance of con-
tinuously updating wildfire probability products with infor-
mation to reflect constantly changing conditions that 
influence wildfire activity. However, this does not mean 
that BP maps will necessarily predict changes in burned 
area patterns that have not yet occurred – for instance, 
where wildfire activity may rapidly increase as climatic 
thresholds are crossed. For example, continued warming 
and increasing variability in atmospheric moisture could 
potentially trigger much larger fires in the northeastern US 
in the near future (Barbero et al. 2015; Poulos 2015). 

Despite limitations, BP maps reflecting current wildfire 
activity can be valuable tools for identifying areas at risk of 
wildfire disasters and planning mitigation actions accord-
ingly. However, robust evaluations are needed for managers 
to have confidence that these products can reliably estimate 
real-world wildfire patterns. An ideal method for evaluating 
models would consist of running a retrospective simulation 
based on older vintage fuels data, then comparing using a 
long time series of subsequent observed fires. An experi-
mental approach based on varying ignition surfaces, fuels 
maps and weather scenarios could further help to identify 
opportunities for improving model estimates. However, this 
was not feasible in the current study owing to the high 
computational demands of running FSim at the scale of 

www.publish.csiro.au/wf International Journal of Wildland Fire 34 (2025) WF23196 

13 

https://www.publish.csiro.au/wf


the entire conterminous US, and we were limited to evalu-
ating the publicly available BP maps based on 2014 and 
2020 LANDFIRE. Given that these products are widely used 
to assess risk in the US, the evaluations in our study are 
informative for managers and researchers desiring a better 
understanding of how these maps can be appropriately used 
to guide risk mitigation. Our results demonstrate that BP 
maps should be used with caution, as it should never be 
assumed that low-BP areas will never experience wildfire. 
Furthermore, our results suggest that potential limitations in 
the current approach of deriving BP maps may stem from 
reliance on historical weather ranges, out-of-date fuel maps, 
or inadequate representation of fine-scale ignition patterns. 
Simulations based on future climate projections, or detailed 
ignition models, as well as more frequent updating of BP 
maps, are potential avenues for producing maps with more 
realistic estimates, thus providing managers with more reli-
able tools to guide risk mitigation. 

Conclusions 

We compared a BP map for the conterminous US derived 
from an FSim model based on 2014 LANDFIRE fuels, 
1972–2012 weather and 1992–2015 historic fires, with 
observed burned area from 2016 to 2022. Our results indi-
cate that FSim BP outputs are useful for estimating the 
likelihood of wildfire exposure, as pyromes across the con-
terminous US had an average of ~71% of burned area occur 
in Med-High or High BP classes. However, there were key 
areas where BP underpredicted major wildfire burned areas, 
notably in the Cascade Range and southern Rocky 
Mountains. Although it should not be expected that a 
model will predict locations of future fires, major discrepan-
cies between BP estimates and observed burned areas high-
light the need for caution when using risk assessments based 
on FSim BP maps to guide risk mitigation. Given the 
regional patterns of where low-BP areas burned more than 
expected, it is quite likely that FSim BP estimates calibrated 
to historical conditions will underestimate BP in areas 
where fire regimes are rapidly shifting from historical base-
lines, or where the variability of wildfire occurrence exceeds 
what is captured in the calibration period. Continuously 
updating BP models based on recent weather, vegetationd 
and ignitions data can help to produce more realistic BP 
estimates. Furthermore, robust evaluations of new BP prod-
ucts are needed to improve their methodologies and test 
their underlying assumptions. Such evaluations and 
improvements are crucial to ensure that models are reliable 
tools for meeting the growing wildfire challenge. 
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