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Pixels to pyrometrics: UAS-derived infrared imagery to evaluate and 
monitor prescribed fire behaviour and effects 
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ABSTRACT 

Background. Prescribed fire is vital for fuel reduction and ecological restoration, but the 
effectiveness and fine-scale interactions are poorly understood. Aims. We developed methods 
for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, 
including measurements of fuel consumption, rate of spread, and residence time to quantitatively 
measure three prescribed fires. Methods. We collected infrared (IR) imagery continuously (0.2 Hz) 
over prescribed burns and one experimental calibration burn, capturing fire progression and 
combustion for multiple hours. Key results. Pyrometrics were successfully extracted from UAS-IR 
imagery with sufficient spatiotemporal resolution to effectively measure and differentiate 
between fires. UAS-IR fuel consumption correlated with weight-based measurements of 10 
1-m2 experimental burn plots, validating our approach to estimating consumption with a cost- 
effective UAS-IR sensor (R2 = 0.99; RMSE = 0.38 kg m−2). Conclusions. Our findings demonstrate 
UAS-IR pyrometrics are an accurate approach to monitoring fire behaviour and effects, such as 
measurements of consumption. Prescribed fire is a fine-scale process; a ground sampling distance 
of <2.3 m2 is recommended. Additional research is needed to validate other derived measure-
ments. Implications. Refined fire monitoring coupled with refined objectives will be pivotal in 
informing fire management of best practices, justifying the use of prescribed fire and providing 
quantitative feedback in an uncertain environment.  

Keywords: fire effects, fire radiative energy (FRE), fire radiative power (FRP), fire rate of spread, 
fuel consumption, image stabilisation, thermal imagery, unmanned aerial vehicles (UAV), 
uncrewed aircraft systems (UAS). 

Introduction 

Prescribed fires differ from wildfires in three aspects: (1) they are intentional and 
planned; (2) they burn with relatively lower intensities; and (3) are designed to achieve 
specific outcomes. During the planning phase, managers can manipulate the burn condi-
tions (seasonality, firing pattern, weather) to achieve specific prescription objectives, 
such as reducing dead and down fuel loadings and understorey vegetation, retaining 
dominant trees and snags, and modifying forest structure and composition to the natural 
range of variability (Fernandes and Botelho 2003; Fulé et al. 2012; Reynolds et al. 2013;  
Ryan et al. 2013; Waring et al. 2016). The planning and outcome of prescribed fires has 
much more potential to be informed by research than full suppression wildfire opera-
tions, due to the fact that burns are conducted with the intention of achieving a desired 
prescription (Hiers et al. 2020). There is a growing need for research using spatially 
explicit tools to understand prescribed fire processes and quantitatively inform land 
management on treatment effectiveness and best practices (Hiers et al. 2020). 

Fire behaviour is a complex interaction of many exogenous (weather, fuel loading and 
moisture, topography, etc.) and endogenous (fire line patterns, convective heating, fire- 
weather feedbacks) factors (Parsons et al. 2017; O’Brien et al. 2018; Hudak et al. 2020). 
The spatial pattern of fuel is a multiscale property, heterogeneous at fine (<1 m2) and 
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coarse (>1 m2) scales (Loudermilk et al. 2012; Rowell et al. 
2020). Consequently, fire is also a multiscale process, inter-
acting with environmental factors at many scales depending 
on the intensity of the fire (Cruz et al. 2022). At low inten-
sities, submeter fuel variability is linked to submeter fire 
variability (Loudermilk et al. 2012; Moran 2019; Cruz et al. 
2022). While this spatial scale is critical for understanding 
ecological fire effects and processes (O’Brien et al. 2018), 
fire monitoring is unable to capture the detail needed to 
characterise these complex fire and fuel patterns (Hiers et al. 
2020). Fire behaviour is often assessed by observing fire, 
such as estimating rate of spread by timing the fire front’s 
progression between points of known distances (Rothermel 
and Deeming 1980). Ocular estimation comes with ocular 
bias, restricting our understanding of fire behaviour with 
respect to fuels and effects. 

Uncrewed aircraft systems (UAS) and new digital tools may 
serve to support prescribed fire management and research, as 
seen in other ecological applications (de Almeida et al. 2020;  
Jain et al. 2020; Boroujeni et al. 2024). Pyrometrics, which is 
the application of statistical, mathematical, and computa-
tional methods to characterise fire and fire effects, has under-
gone a transformation with the adoption of UAS and other 
sub-orbital remote sensing platforms (Nitoslawski et al. 
2021). Pyrometric research using UAS and piloted aircrafts 
draws on theoretical and lab-tested work to produce spatially 
explicit measurements of fine-scale fire patterns and processes 
(O’Brien et al. 2015; Hudak et al. 2016; Moran et al. 2019,  
2022; Bright et al. 2022; Schumacher et al. 2022). 
Pyrometrics derived specifically from UAS-borne imagery 
include energy release (Moran et al. 2022), rate of spread 
(Moran et al. 2019; Gowravaram et al. 2022; Schumacher 
et al. 2022), tree crown scorch (Moran et al. 2022), burn 
severity (Hillman et al. 2021), and fire behaviour interactions 
(Filkov et al. 2021). UAS-derived data bridges the spatio-
temporal gap between satellite sensors and field data, poten-
tially providing a cost-effective method of monitoring and 
studying fine-scale prescribed fire patterns. 

Using infrared (IR) imagery to measure fire energy 
release, rate of spread, and other fire behaviour character-
istics is common in fire ecology research (Wooster et al. 
2005; Kremens et al. 2012; Smith et al. 2013; Mathews 
et al. 2016; Johnston et al. 2018; Sagel et al. 2021). 
However, most studies are limited to the laboratory setting 
or experimental burns where ample time is provided to set 
up equipment in a semi-controlled environment and cam-
eras are mounted in fixed positions. To our knowledge, no 
research has tested the accuracy of UAS-borne IR imagery in 
estimating consumption of surface fuel, especially with a 
consumer-grade sensor. IR imagery can be used to estimate 
fuel consumption with multiple approaches appearing in 
literature (Wooster 2002; Wooster et al. 2005; Freeborn 
et al. 2008; Smith et al. 2013; Hudak et al. 2016; Klauberg 
et al. 2018). These approaches use a radiometrically cali-
brated IR image stack of the entire combustion process and 

then integrate power over time to calculate energy release. 
Radiative energy is then converted to fuel consumed using 
either the energy density or the moisture of the fuel. With the 
onset of UAS, using infrared imagery to measure fire beha-
viour has become much more attractive to research and local 
agencies. Consumer-grade UAS are cost-effective, accessible, 
and can be easily deployed for fire monitoring use. 
Conversely, UAS-borne (and similar crewed platforms) IR 
sensors often have a low saturation threshold, so maximum 
fire temperatures may not be measured (Moran et al. 2019). 
The imagery is unstable and requires colocation and regis-
tration pre-processing (Valero et al. 2021). Additionally, 
UAS often are limited in flight time, so post-frontal combus-
tion may be omitted (Moran et al. 2022). Despite all these 
challenges, UAS may be able to deliver the missing piece of 
information to connect post-fire effects with pre-fire fuel, 
informing our understanding of fire as a mechanistic process. 

We initiated this study to evaluate the accuracy of UAS to 
quantitatively monitor and measure prescribed fire. We 
collected UAS-derived radiometric, IR imagery of a calibra-
tion experimental burn and three prescribed fires to: (1) 
validate the accuracy of UAS-based radiative energy surface 
fuel consumption estimates; and (2) use extracted pyro-
metrics (consumption, rate of spread, and residence time) 
to characterise prescribed fire behaviour and effects. We 
expected UAS-derived IR imagery would be an accurate 
approach to estimating surface fuel consumption and that 
extracted pyrometrics would characterise the variability 
between and within each prescribed fire. 

Materials and methods 

UAS platform and imagery collection 

Prior to ignition, we launched the UAS to collect images of 
the fire behaviour. We positioned the UAS directly overhead 
the centre of the plots (described in section 'Prescribed fire 
imagery aquisition and analysis'), facing north and at 122 m 
above ground, and collected thermal imagery at 0.2 Hz (5 s 
interval) to capture ignitions and post-frontal fuel consump-
tion. All UAS imagery was collected with an Autel Evo II 
640t UAS, featuring a 48-megapixel colour camera and a 
0.32-megapixel IR camera. The thermal camera is an 
Infiniray Micro III Lite 640 (Yantai, Shandong, China) 
uncooled radiometric sensor that samples at the longwave 
IR wavelengths, 8–14 μm with a temperature range of 
0–650°C. At 122 m, the colour and infrared sensors ground 
sampling distance are 1.2 and 14 cm pixel−1, respectively. 
With a realistic flight time of 30 min, five batteries, and field 
charging array, we could perpetually hover the UAS over the 
fire. About every 30 min, we paused thermal image sam-
pling to swap the UAS battery, returning to the same alti-
tude and location to resume monitoring. It is important to 
note we used the low gain setting to capture infrared 
images, which is less sensitive than the high gain but can 
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sense at the full operational range of the camera. Saturation 
refers to the highest temperature at which a sensor can 
accurately measure. Above this point, the sensor cannot 
differentiate between temperatures and may provide 
inaccurate readings. Sensor saturation can lead to under-
estimation of the energy produced, which is critical to pre-
cisely estimating energy release of combusting biomass via 
IR sensing. The IR sensor used in this project is certified by 
the manufacturer to 650°C, below the maximum potential 
combustion temperature (Paugam et al. 2013; Moran et al. 
2019) and is subject to the dependency of flame emissivity 
on flame depth (Johnston et al. 2014), but we selected this 
camera because of its affordability and simple use. While the 
camera limitation should be acknowledged, most prescribed 
fire typically involves low intensity fire, which is well below 
the maximum combustion temperature and IR saturation 
temperature (Iverson et al. 2004; Kennard et al. 2005). 

Thermal imagery preprocessing 

The thermal imagery acquired from the UAS in raw form 
was a 16-bit 1-band raster, with no geolocation information, 
requiring appropriate processing for quantitative spatial 
analysis. The three steps used to process the imagery are: 
(1) conversion to temperature (see Supplementary material 
Eqn S1); (2) stabilisation; and (3) georectification. All pyro-
metrics were derived from IR imagery preprocessed using 
the methods described, similar to Moran et al. (2019, 2022) 
and using equations developed and applied by O’Brien et al. 
(2015) and Hudak et al. (2016). After testing four stabilisa-
tion algorithms and the use of a mask to remove burning 
pixels, we determined an Enhanced Correlation Coefficient 
algorithm without a fire-mask was the best stabilising model 
for this study, used for all imagery hereafter (Fig. S2). The 
end result of the pre-processing were georeferenced, 

temperature-calibrated image stacks, where each pixel rep-
resents fire radiative power (FRP, W m−2) at a specified 
location. Each image stack can be thought of as a time-lapse 
of fire behaviour. FRP is then converted to fire radiative 
energy (FRE, MJ m2) by taking the integral of FRP over 
time. For more details on thermal imagery preprocessing, 
see Supplementary material S1. 

Experimental calibration burn 

We conducted an experimental burn to validate the esti-
mates of surface fuel consumption derived from a UAS- 
mounted IR sensor. To do this, we burned known quantities 
of ponderosa fuel, measured the consumption directly by 
weighing fuel before and after the burn (hereafter weight- 
based), and compared it to consumption estimates derived 
from the UAS-IR imagery (hereafter UAS-based). Images 
were processed as described above to generate FRE of 
each plot. We then calculated fuel consumption using two 
published estimators (Eqns 1 and 2) and compared it with 
consumption calculated by weighing fuel before and after. 
This calibration burn compared the UAS-IR method of esti-
mating consumption with a validated, ground-truth coun-
terpart in a variety of fuel conditions. 

We precisely weighed and homogeneously arranged var-
iable amounts of dry ponderosa litter and cut logs (<15 cm 
in diameter) in 10 1-m2 plots. We selected coarse woody 
debris (CWD) and litter quantities that are representative of 
fuel conditions encountered in ponderosa forests, (Table 1).  
Roccaforte et al. (2012) reported a maximum 10 and 
0.8 kg m−2 of CWD and litter loadings, given the bulk 
density of litter is ~4 Mg ha−1 cm−1 (Stephens et al. 
2004). We doubled each of these quantities to account for 
the spatial heterogeneity typical of surface fuels. The design 
of the 10 plots was to burn across a range of fuel loads at 

Table 1. Calibration burn fuel loading, actual consumption measured in the field (weight-based), and estimated UAS consumption (UAS-based, 
using  Eqn 2) of each 1-m2 plot designed to represent the range of fuel loading conditions encountered in south-western ponderosa forests.           

Plot Dry 
wood 

weight 
(kg) 

Dry litter 
weight 

(kg) 

Wood:litter 
ratio 

Fuel 
moisture 

(%) 

Weight-based 
consumption 

(kg) 

UAS-based 
consumption 

(kg) 

Percent 
consumption 

(weight- 
based) (%) 

Percent 
consumption 

(UAS-based) (%)   

1  1.83  0.43  4.3  11  2.14  2.44  95  108 

2  3.48  0.89  3.9  11  4.30  4.29  98  98 

3  5.36  1.78  3.0  11  7.00  7.19  98  101 

4  7.18  0.45  16  11  7.49  8.22  98  107 

5  8.93  0.90  9.9  11  9.64  10.64  98  108 

6  10.74  1.78  6.0  11  12.26  12.15  98  97 

7  12.53  0.45  28  11  12.70  13.51  98  104 

8  14.26  0.89  16  11  14.67  15.95  97  105 

9  16.06  1.78  9.0  11  17.50  18.19  98  102 

10  17.79  1.78  10  11  19.07  21.54  97  110   
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different ratios of litter and wood. We first stratified our 
plots by wood weight (including moisture-related weight), 
arranging wood from 2 to 20 kg at 2-kg intervals at each 
plot. To ensure we sampled variable litter and wood ratios 
that were representative of the sites, we then added ponder-
osa needle cast collected nearby the calibration plot at 
weights of 0.5 kg, 1 kg, and 2 kg (Table 1). Fuel moisture 
was sampled immediately prior to ignitions from three wood 
and three litter samples and calculated as the relative loss of 
water content after drying in an oven at 70°C for 24-h 
intervals until the dry weight was stable (Keane 2015). 

Plots were ignited with a flare to avoid adding fuel and 
energy to the plot during ignition. We collected IR imagery 
at 0.2 Hz, 61 m above ground for 2 h and 15 min. 
Consumption was immediately stopped by spraying all the 
plots with water and extinguishing any smouldering. After 
the burn, all remaining ash and charred wood was collected, 
dried until the weight stabilised, and weighed to calculate 
the total consumption following eqn 3 in Smith et al. (2005). 
This approach does not account for incombustible material 
in the fuel, the proportional combustion completeness, and 
potential loss of ash from convective heat and wind. A 
solution is to use equation 12 from Smith et al. (2005) 
that accounts for the entire combustion budget by calculat-
ing the loss on ignition of pre- and post-fire fuel compo-
nents. Nonetheless, the simple subtraction method used here 
calculates fuel consumption to ~10% accuracy of the more 
time-consuming approach (Smith et al. 2005). 

We compared methods for fuel consumption (FC) estima-
tion using two different FRE-based approaches (Smith et al. 
2013; Hudak et al. 2016): 

FC = FRE/rf/hc (1) 

W
FC = FRE

(3.025 5.32 × )c
(2)  

where FC is consumption (kg m−2), hc is heat content 
(MJ kg−1), rf is radiative fraction, and Wc is water content 
(%). Eqn 1 is an energy density-based approach that 
accounts for the heat content of the fuel and the proportion 
of energy released radiatively (Hudak et al. 2016). We used 
an rf of 17%, the mean radiative fraction of the 12 Quercus 
litter and woody debris experimental burns carried out by  
Kremens et al. (2012). The average heat content for all 
ponderosa fuel components was 20.86 MJ kg−1 (Van 
Wagtendonk et al. 1998). Equation 2 comes from Smith 
et al. (2013). This moisture-based approach does not 
account for the effect of variable heat contents of fuel 
types and instead addresses the strong effect moisture has 
on radiative fraction and consumption (Smith et al. 2013). 

Prescribed fire imagery acquisition and analysis 

We collected data at three operational prescribed fires: two 
in Arizona; and one in Florida (Table 2). The prescribed fire 

sites were all composed of a fire tolerant Pinus species but 
displayed substantial variability in fuel loading, fire season-
ality, and target fuel load reductions (Table 2). To collect 
data on prescribed fires in Arizona, we obtained permission 
from the USDA Regional Fire and Aviation Office to operate 
UAS and coordinated with local US Forest Service districts 
to attend approved prescribed fires. In Florida, the pre-
scribed fire was on private land, so we coordinated with 
landowners to attend the fire. We adhered to the Federal 
Aviation Administration Part 107 rules and the safety regu-
lations written in the US Forest Service research contract 
(when attending agency-administered prescribed fires). 
Sites were selected based on availability of prescribed fires 
during the 2022–2023 season. Prescribed fires were ignited 
in the Fall, Winter, and Spring and were within the target 
weather window described in the prescribed burn plans (see 
Supplementary material). 

Prior to ignitions, we located plots that were representa-
tive of the fuel conditions of the prescribed fire sites. We 
placed plots near the perimeter of the fire, typically on 
opposite sides of the burn unit to capture multiple plots 
during one ignition operation. Plot size of the thermal imag-
ery was variable, dependent on the UAS altitude, drift, and 
stability. Generally, plots were about 0.4 ha (Table 2). We 
placed four 40-cm diameter aluminium pans in each plot, 
one in the centre and three in the north, south, and west 
directions about 15–20 m from the centre pan (prioritising 
canopy openings to avoid occlusion). The pans acted as 
ground control points (GCPs), allowing us to continually 
fly the UAS over the same location, georectify images, and 
validate the georectification. Shiny aluminium contrasted 
the forest floor well and had a low emissivity, meaning 
the plates were clearly visible in the infrared and colour 
imagery. We used the pans to georectify the thermal image 
stacks and verify that the stabilisation and coregistration 
workflow produced acceptable results, as described below. 
At the Hanna Hammock Rx, we geolocated each pan using a 
real-time kinematics GPS with centimeter-level accuracy. At 
the Hundred Rx and Wild Bill Rx, we measured the distance 
between each GCP and inferred their coordinate position by 
orthorectifying pre-burn images of the plot via photogram-
metry (Agisoft 2023). This method was centimetre-level 
accurate as well, but the geolocation was subject to the 
precision of the UAS GPS. We recorded the average daily 
fuel moisture of 10-h fuels from the nearest Remote 
Automated Weather Station, available from the Western 
Regional Climate Center (http://www.raws.dri.edu). 

We used the best performing method from the calibration 
burn and the moisture-based approach (Eqn 2), to convert 
FRE to consumption for the prescribed fire plots. One chal-
lenge with monitoring with UAS is capturing post-frontal 
combustion (Moran et al. 2022), which may continue for 
hours or days after the burn. We balanced collecting as 
many plots as possible with capturing all possible post- 
frontal consumption by sampling about two plots per 
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operational shift, each plot being sampled until radiant 
energy release had substantially subsided. To estimate 
post-frontal combustion, we fit a linear regression with a 
logarithmic transformation of the plot FRP at each infrared 
imagei in the image stack. Linear regressions were calcu-
lated for each burn: 

tln(FRP) = + × +0 1 (3)  

where t is time. We fit the linear regression to the energy 
release from the peak energy release to the end of the image 
capture, which visually exhibited a logarithmic relationship. 
We then used this model to predict unmeasured energy 
release of the plots from when data collection stopped to 
when the theoretical energy release ≤1 W m−2. Comparing 
the total energy (FRE) measured with the predicted 
unmeasured energy release gave us a corrective factor, 
which we applied to each consumption raster to account 
for any unmeasured energy. For example, if the regression 
predicted 20% of energy was not captured during collection, 
then each pixel would be multiplied by 1.2. 

To estimate rate of spread, we used the masked FRP 
raster stack to generate an arrival time, or progression, 
raster of the fire when each pixel reached flaming power, 
1070 W m−2 (Hudak et al. 2016). The rate of spread was 
then derived as the rate of change or slope (radians) of the 
progression raster (Moore et al. 2020) using the equation: 

ROS = 1
tan(slope)

× 60 (4)  

where ROS is measured in m min−1. The slope raster was 
then converted to points and interpolated for all progression 
pixels using inverse distance weighing. Residence time was 
calculated as the total time (in seconds) that each pixel was 
greater than or equal to 300°C (Wotton et al. 2012). 

Statistical analysis 

To evaluate the effectiveness of UAS-IR imagery at capturing 
the ‘signal’ of prescribed fires, we assessed whether the 
spatial resolution could adequately characterise fire beha-
viour variability. In signal processing, the Nyquist criterion 
states the sampling interval (or resolution) should be twice 
that of the frequency in the sample (Shannon 1949; Hengl 
2006). Therefore, we evaluated the resolution of the ‘signal’ 
to determine the resolution needed of the sensor. We con-
structed a semi-variogram of each plot’s FRE raster to deter-
mine the spatial scale where autocorrelation was no longer 
significant. Then, we calculated the median semi-variogram 
range of all the plots and resampled each pyrometric raster 
to this value. We confirmed that autocorrelation was 
reduced with a Moran's I-test. These spatially-independent 
samples of all three pyrometrics were then compared to 
assess differences among prescribed burns with a non- 
parametric Kruskal–Wallis test. If the Kruskal–Wallis test Ta
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indicated significant differences, we used the Dunn test, a 
post hoc test for non-parametric data, to determine specifi-
cally which burns were different from one another. 

Results 

We successfully collected 16 h of imagery of fire behaviour, 
stabilising and processing it into spatially explicit pyro-
metrics from three prescribed fires and one calibration 
burn. The average plot size of the thermal imagery was 
0.41 ha (approximately square with 64-m sides) and the 
average duration of fire captured was 87 min (Table 2). 
The longest duration of thermal imagery was 3.5 h, captured 
at plot 3 of Wild Bill prescribed fire. 

UAS-derived consumption 

Observed weight-based consumption of the 10 1-m2 plots 
ranged from 2.1 to 19 kg m−2 with all plots consuming 95% 
or more of dry weight fuel (Table 1). We measured average 
litter and wood fuel moisture as 11%. UAS-based consump-
tion estimates were in high agreement with observations 
across all plots (Fig. 1). Converting radiative energy using 
either Eqns 1 or 2 to consumption was highly correlated 
with observed consumption. However, using equation 1 
from Hudak et al. (2016) consistently underpredicted con-
sumption. The linear regression of observation as the 
response had a slope of 0.77 (R2 = 0.99). Converting FRE 
using the fuel moisture approach from Smith et al. (2013),  
Eqn 2 was closer to a 1:1 relationship with a linear regres-
sion slope of 1.1 (R2 = 0.99). Therefore, all estimates of 

consumption for the prescribed fires (Table 2) were gener-
ated with the Smith et al. (2013) equation (Eqn 2). 

UAS-IR fire behaviour 

Extracted pyrometrics from the UAS-derived IR imagery 
agreed with qualitative ocular observations of the burns: 
Hanna Hammock spread the fastest; and Hundred and 
Wild Bill prescribed fires consumed more fuel with longer 
residence times (Fig. 2). Predicted FRE using Eqn 3 to 
account for unmeasured FRP performed well, with strong 
model fits with the captured energy (Fig. 3). Plots where the 
UAS imagery collection captured enough post-frontal com-
bustion that a decay curve was evident had the strongest 
model performance. At the Hanna Hammock plots, majority 
of the energy was released within 10-min, resulting in most 
energy being directly measured and only a minor fraction 
modelled with Eqn 3. The prescribed burns in Arizona con-
tinued to release significant energy for hours after the peak 
FRP and therefore the regression-based estimates of energy 
release were critical for estimating total energy released and 
consumption. Average total consumption for Hanna 
Hammock, Hundred, and Wild Bill were 0.3, 1.4, and 
4.9 kg m−2, respectively. The consumption data was heavily 
positively skewed (Fig. 4). Maximum within-plot consump-
tion was 65 kg m−2, sampled at plot 1 of the Wild Bill Rx. 
Median rate of spread was 2.5, 0.7, and 0.7 m min−1 for 
Hanna Hammock, Hundred, and Wild Bill prescribed fires, 
respectively. Rate of spread reported by the UAS imagery 
ranged from 0.002 to 4.0 m min−1, the maximum recorded 
at Plot 1 of Hanna Hammock and the minimum recorded in 
plot 4 of Wild Bill prescribed fire. Median residence time 
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was 40, 96, and 170 s for Hanna Hammock, Hundred, and 
Wild Bill prescribed fires, respectively. 

Using a semi-variogram to identify autocorrelation for 
each plot’s radiative energy (FRE) raster, we found the 
median range to be 4.6 m. Before resampling, FRE rasters 
of each plot had a median resolution of 0.13 m (Table 2) and 
Moran’s I-value of 0.96, indicating a very strong positive 
autocorrelation. 35 pixels were resampled to 4.6 m 

resolution to minimise autocorrelation. Therefore, the 
Nyquist sampling theorem would suggest a sampling resolu-
tion of 2.3 m or less is needed to characterise the fire 
behaviour of prescribed fires. After spatial resampling 
(to 4.6 m), median Moran’s I-value was reduced to 0.29: 
while spatial autocorrelation was still present, it was mark-
edly reduced. A Kruskal–Wallis test of the resampled pyro-
metric data showed that each pyrometric had significantly 
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different groups (Fig. 4). The post hoc Dunn tests showed 
that Wild Bill and Hundred groups were similar in terms of 
rate of spread or residence time distributions (Fig. 4), 
though all other Dunn tests were significant (P < 0.025). 

Discussion 

The preprocessing workflow developed to calibrate, stabi-
lise, and georeference UAS-IR imagery was effective for 
deriving pyrometrics. We converted IR emittance to temper-
ature using a bench-tested algorithm (Eqn S1) that per-
formed well (R2 = 0.99). Then, we selected the ECC-affine 
transformation model to stabilise image stacks with sub- 
meter drift. Finally, we georeferenced image stacks using 
GCPs with 1 m-level precision (average RMSE = 1.1 m). 

Our calibration experiment demonstrated that estimating 
fuel consumption using UAS-IR imagery was accurate in a 
range of fuel loading conditions and could be applied to the 
prescribed fire IR imagery. The fuel moisture-based equa-
tion from Smith et al. (2013) (Eqn 2) was the best approach 
for our purposes. While reliable and often time consuming, 
traditional sampling methods for estimating consumption 
are not spatially explicit and are less accurate (Lutes et al. 
2006; Sikkink and Keane 2008). This research suggested 
that UAS-IR imagery is an alternative option to measuring 
fuel consumption. While the calibration experiment was 
representative of the prescribed fire fuel and monitoring 

conditions, additional research is needed to validate in-situ 
consumption estimates in a range of fuel types, moisture 
contents, and arrangements. 

Caution should be exercised when selecting a method to 
converting fire radiative energy to consumption. Previous 
research by Hudak et al. (2016) found the energy approach 
(Eqn 1) underestimated consumption, aligning with our 
results (Fig. 1). One possible source for the underestimated 
consumption was the fuel moisture present. In the context of 
thermal signal saturation, these results are also limited to 
the sensor tested because of the relatively low thermal 
sensor saturation temperature. While it is possible that the 
plots may have burned at temperatures greater than the 
saturation point, the high precision of Fig. 1 results suggest 
the sensor did not reach saturation or saturation was equal 
for each plot. 

Pyrometrics derived from UAS imagery proved to be 
useful for prescribed fire evaluation and monitoring. Three 
prescribed fires were examined using thermal infrared imag-
ery, yielding spatially explicit measurements of consump-
tion, rate of spread, and residence time. From a qualitative 
standpoint, these measurements were consistent with ocular 
estimates of fire behaviour and effects, highlighting discern-
ible variability among the burns (Fig. 4). The semivario-
grams illustrated that prescribed fire behaviour measured 
at each plot occurs at moderate scales (<4.6 m). The 
Nyquist Criterion states that to accurately sample a contin-
uous signal and reconstruct it without aliasing, you must 
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sample at least twice the frequency (or resolution) of the 
highest frequency component in the signal, suggesting sen-
sor resolutions of less than 2.3 m are ideal. As prescribed fire 
is often affected by fine-scale processes, sampling at high 
temporal (>0.1 Hz) and spatial (<1 m2) resolutions is 
imperative to capture the heterogeneity of pyrometrics 
(Moran et al. 2019). The sampling resolution will need to 
be considered for each fire and fuel type. For example, 
sampling at lower resolutions for moderate intensity, slow 
spreading fires in forested ecosystems will likely still capture 
the heterogeneity of fire behaviour. In grass-dominant fuel 
types though, high temporal sampling is critical to capture 
the brief peak in radiative power release when the grass fuel 
is combusting. We sampled fire behaviour at sub-meter 
resolutions, ensuring detailed spatial variability was cap-
tured. The Kruskal–Wallis and post hoc tests of the aggre-
gated pyrometrics illustrated the variability of fire captured 
and also corroborated that our approach can effectively 
detect this variability and differentiate between prescribed 
burn pyrometrics (consumption, rate of spread, and resi-
dence time). While the intensities of the prescribed fires 
sampled were variable, fire effects were characteristic of 
low severity fire in their respective fire regimes (Table 2) 

(Varner et al. 2005; Fulé et al. 2012). These sites captured a 
variety of prescribed fire dynamics in fire tolerant Pinus 
forests, representative of the many scenarios encountered 
in the US prescribed fire program. Future research could 
build off this work, testing this process in higher fuel loads 
and in other forest types. 

We found that two out of the three evaluated prescribed 
fires likely achieved their objectives as far as can be deter-
mined from the 2–4 study plots in each fire. However, some 
of the burns lacked specific objectives related to fuel con-
sumption. Hanna Hammock showcased the fastest rate of 
spread (peak and average spread) and lowest consumption 
(Fig. 4). Given a pre-fire fuel loading of 0.57 kg m−2 

(Table 2) and the consumption objective of 95% fuel reduc-
tion (see Supplementary material for details on burn objec-
tives), desired consumption was 0.54 kg m−2. We estimated 
consumption averaged 0.3 kg m−2, 56% the desired objec-
tive. At this particular burn, adjacent research sampled pre- 
and post-burn fuel loading data of the site using 25 0.25 m2 

clip-plots (S. W. Bigelow, pers. comm.). Field fuel sampling 
inferred consumption to be 0.38 kg m−2, or 66% of pre-burn 
fuel mass. This adjacent study corroborates our consump-
tion estimate and presents solid evidence that the desired 
outcome of the burn, while stringent, was not achieved. At 
the Hundred Rx, 50–85% reduction in fuel loading was 
desired, approximately equal to 1–2 kg m−2. UAS-IR con-
sumption at the two plots sampled was estimated to be 1.1 
and 1.6 kg m−2, so consumption objectives were likely 
achieved. The Wild Bill Rx burn had significantly higher 
consumption than the other burns, estimated at 4.9 kg m−2. 
Unfortunately, the burn plan only specified post-fire fuel 
loading (1.1–1.6 kg m−2) and not pre-fire fuel conditions or 
consumption, so direct comparisons were challenging. Given 
our consumption estimate and the desired post-fire fuel load-
ing specified in the objectives, estimated consumption would 
equate to 75–81%. In similar forest types, desired consump-
tion was specified to be 50–85% (Hundred Rx) and 40–80% 
(Waring et al. 2016) reduction in fuel loading. So, it is plausi-
ble that the Wild Bill Rx burn achieved consumption objec-
tives, although there remains a degree of uncertainty. 

A limitation of our study and the use of aerial infrared 
sensors was the occlusion of the thermal signal from tree 
canopy. Canopy foliage intercepted the thermal radiation of 
the fire, so we corrected for occluded radiative energy by 
masking pixels that did not exceed 1070 W m−2 (see 
Supplementary material for more details). While the effect 
of canopy cover on radiative energy can be accounted for 
(Hudak et al. 2016; Mathews et al. 2016), caution should be 
exercised when estimating FRE in densely forested areas, 
especially when surface fuels are heterogeneous. Without 
the addition of other sources of sub-canopy fuel character-
istics (lidar or ground measurements), our approach to mon-
itoring prescribed fire requires unobstructed view of the 
surface fuels. We suggest our approach only be applied in 
areas with less than 75% canopy cover (which we adhered to 
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in our study) unless sub-canopy fuels are accounted for. 
Additionally, caution should be exercised when interpreting 
our results of rate of spread and residence times since these 
measurements were only compared to ocular estimates of fire 
behaviour as a means of validation at the eight prescribed fire 
plots. Future research quantitatively validating UAS-IR mea-
surements of rate of spread and residence time and accounting 
for sub-canopy fire behaviour is recommended. 

Researching prescribed fire during active incidents pre-
sented significant challenges. Often, burns were delayed, 
relocated, and difficult to access. Attending prescribed fires 
with UAS required extensive authorisation from the responsi-
ble agency, and Red Card qualified and FAA Part 107 certified 
researchers to operate a UAS over an active incident. The 
prescribed fires attended had a narrow window of favourable 
weather conditions and 1–3 day’s notice of location and igni-
tion time was typical. Collecting ground measurements was 
not possible with the limited time and resources available to 
us, though these scenarios represent the situations in which 
UAS may be implemented to monitor fire effects. Increasing 
our knowledge of prescribed fire and application of innovative 
technologies will require more research on active incidents 
and active collaboration between practitioners and research-
ers. Research-led development of software to automatically 
process UAS-IR imagery could provide faster results of pre-
scribed burn effectiveness. Deriving and evaluating initial or 
rapidly-estimated pyrometrics directly from raw thermal 
images without extensive post-processing is a necessary 
research thread for achieving real-time pyrometrics and 
instantaneous feedback to managers. 

Operationally, our findings support the efficacy of UAS- 
derived pyrometrics for monitoring and evaluating pre-
scribed fires, specifically consumption, rate of spread, and 
residence time. We noted that the burn plans of the fires we 
attended contained broad objectives with wide ranges of 
desired outcomes. Refined fire monitoring coupled with 
refined objectives will be pivotal in informing fire manage-
ment of best practices, justifying the use of prescribed fire, 
and providing quantitative feedback in an environment sat-
urated with uncertainty. The application of prescribed fire is 
often subject to constraints due to concerns of disciplinary 
experts within agencies about the effect of fire on natural 
and cultural resources. Interdisciplinary cooperation would 
help prescribed fire to achieve objectives beyond fuel reduc-
tion. For example, detailed UAS-derived pyrometrics could 
be translated into estimates of belowground heat penetra-
tion (heat per unit area and residence time), affecting seed 
banks and root tissues, as well as aboveground energy 
release affecting canopy scorch and bole char (O’Brien 
et al. 2018). Wildlife habitat (Mason and Lashley 2021) 
and hydrological impacts (Flerchinger et al. 2016;  
Williams et al. 2020) can also be linked to fine-scale fire 
effects. The effect of prescribed burns on cultural resources 
such as fire-sensitive archaeological sites could be moni-
tored in detail, allowing managers to assess whether pre- 

fire protection efforts such as clearing adjacent fuels were 
successful (Ryan 2010). 

Supplementary material 

Supplementary material is available online. 
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