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Abstract: Lightning is responsible for the most area annually burned by wildfires in the extratropical
region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable
forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the
development and verification of a probabilistic lightning-strike algorithm running on a uniform
20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning
forecasting model for North America derived from 29-year-long data records. The algorithm consists
of a large set of regional logistic equations parameterized on the long-term data records of observed
lightning strikes and meteorological reanalysis fields from NOAA. Principal Component Analysis
was employed to extract 13 principal components from a list of 611 potential predictors. Our analysis
revealed that the occurrence of cloud-to-ground lightning strikes primarily depends on three factors:
the temperature and geopotential heights across vertical pressure levels, the amount of low-level
atmospheric moisture, and wind vectors. These physical variables isolate the conditions that are
favorable for the development of thunderstorms and impact the vertical separation of electric charges
in the lower troposphere during storms, which causes the voltage potential between the ground and
the cloud deck to increase to a level that triggers electrical discharges. The results from a forecast
verification using independent data showed excellent model performance, thus making this algorithm
suitable for incorporation into models designed to forecast the chance of wildfire ignitions.

Keywords: lightning; model; logistic regression; forecast; prediction; wildfire; probability; PCA

1. Introduction

Lightning has been an increasing cause of wildfires in recent decades. Although,
historically, lightning has only caused 15–20% of wildfire occurrences in the USA, lightning-
ignited wildfires account for about 60% of the annually burned acreage. In the extratropical
portion of the Northern Hemisphere, lighting is responsible for 77% of the burned wildfire
area every year [1]. Hence, the capability to predict lightning 7–10 days in advance on a
continental scale, at a high spatial resolution using operational, numerical weather forecasts
as drivers, is a key prerequisite for any modeling efforts aimed at quantifying the chances
of wildfire ignition over large regions.

Attempts to model lightning date back to 1980s [2,3]. These early studies recognized
the importance of lightning in wildfire occurrences and that lightning’s frequency was cor-
related with the low-level moisture flux induced by strong upward vertical motions in the
boundary layer during storms [3]. With the advancement of numerical weather prediction
(NWP) models, an effort was made to incorporate lightning into operational forecasts based
on “first principles” using simulated thunderstorm parameters and the microphysical
properties of clouds as drivers [4–6]. These studies found promising relationships between
lightning’s frequency and the depth of convective clouds as well as between a parameter
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called the Potential Electrical Energy (PEE) of clouds and noninductive charge separation,
which involves collisions of graupel and ice particles in the presence of supercooled liquid
water. PEE was assumed to dissipate when it exceeds preassigned threshold values, causing
lightning to be generated. The Lightning Potential Index (LPI) was introduced as a new
parameter in weather forecast models to measure the potential for the generation and sepa-
ration of the electrical charges leading to lightning flashes in convective thunderstorms [5].
The LPI is calculated within the charge separation region of clouds between 0 ◦C and
−20 ◦C, where the noninductive mechanism involving the collisions of ice and graupel
particles in the presence of supercooled water is most effective. Studies have shown that
the LPI is well correlated with observed lightning. Wong et al. [7] found that the Price
and Rind lightning parameterization scheme [4] did not produce correct distributions for
lightning flashes in the context of convection-resolving forecasts produced by the Weather
Research and Forecasting (WRF) model. Recently, satellite observations have revealed a
strong correlation between the number of lightning strokes and the vertical distribution of
ice particles, as depicted by the 94 GHz products of the Cloud Profiling Radar on board the
CloudSat (a polar satellite of NASA’s Earth System Science Pathfinder) [8]. These data could
help improve the existing mechanistic schemes of cloud electrification to predict lightning
that are employed by modern NWP models.

When the goal is the generation of accurate lightning forecasts over a limited domain,
the best approach is to derive region- and season/time-specific lightning activity models
using multivariate statistical methods that relate the observed probability of lightning
flashes/strikes to a large number of atmospheric parameters describing the vertical struc-
ture of thunderstorms. This approach typically involves machine learning algorithms such
as random forest or a combination of a stepwise regression analysis, Principal Component
Analysis (PCA), and logistic regression [9–13]. Our study elected to apply PCA and logis-
tic regression to a large archive of historical lightning and meteorological data spanning
29 years over the USA (see the Section 2 for details).

In the USA, the National Predictive Services (NPS) is an interagency group tasked
with the operational delivery of 7-Day Wildfire Potential Outlooks for fire management
operations. The NPS asked the Rocky Mountain Center (RMC), an applied research unit at
the US Forest Service Rocky Mountain Research Station (RMRS), for Fire–Weather Intelli-
gence to develop a system of statistical models for predicting wildfire ignition probabilities
on a national grid using numerical weather forecasts by the National Weather Service as
input. As a first step in the project, the RMC built a lightning forecast model. This paper
describes the methodology employed by the RMC to derive a suite of regional, monthly,
logistic equations capable of estimating the probability of cloud-to-ground (CG) lightning
strikes, using forecast weather fields, on a 20 km grid over the continental USA (ConUS)
and Alaska (AK), and the verification of these equations against independent data.

2. Materials and Methods

The overall approach of this study followed the original methodology proposed by
Bothwell [14], which was later also adopted by Buckey [15] and Richardson [16]. We
used datasets of much longer durations to derive new and improved lightning prediction
equations for the ConUS and AK.

2.1. Georeferenced Datasets

Table 1 lists the datasets utilized for the ConUS. The developmental database included
two 29-year-long climatological records of weather reanalysis fields and observed lightning
strikes over the ConUS. These were used to derive lightning forecast regression equations.
The NOAA North American Regional Reanalysis (NARR) [17], containing 3D fields from
00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC for the period from January
1990 to 2018, were downloaded and archived in GRIB2 format. The lightning data for the
lower 48 states (ConUS) were provided by Vaisala [18] through a Federal Contract with
the Bureau of Land Management (BLM) at the US Department of the Interior. Vaisala’s
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historical lightning dataset, covering the period from January 1990 to December 2018, was
delivered to our team by the Western Regional Climate Center at the Desert Research
Institute in Reno, NV, USA. According to the signed contract between Vaisala and BLM,
only US Government Agencies may use the lightning dataset free of charge for scientific
research. Three-hour forecast-gridded fields extending over 10 days, produced by the
NOAA Global Forecast System (GFS) [19], were also downloaded and archived in GRIB2
format (0.25 × 0.25 degree) for the core fire season (April–September) of 2018 in order to
verify our lightning forecast equations against independent data.

Table 1. Datasets utilized in the lightning forecast model’s development and testing for the ConUS.

Dataset Name and Description Record Length
(Years)

Binary Size
(Gbit)

North American Regional Reanalysis (NARR) [17]: 3D gridded historical weather
dataset provided by NOAA. Horizontal resolution of 32 km interpolated to a

20 km resolution for the ConUS with a 3 h time step.
29 3000

Lightning dataset: provided by Vaisala [18] (through the Western Regional
Climate Center) gridded to 3 h time steps at a 20 km resolution. 29 400

NCEP GFS Forecast Fields [19]: 3 h time steps from 0 to 240 h/10 days; 3D grids
of 0.25 × 0.25-degree resolution interpolated to a 20 km resolution used for

forecast testing and verification purposes and 2019 forecasts.
1 8000

The development of the lightning forecast model for AK used similar datasets as
the ConUS model but covered a shorter time period. NARR was used as a source of ob-
served gridded weather fields and the Alaska Lightning Detection Network (ALDN) [20],
owned and maintained by the Alaska Fire Service (AFS) [21], was utilized as a source
of geo-referenced lightning-strike data. The training datasets for AK spanned a pe-
riod of 10 years (from 2012 to 2021). The reason for this was that, during the summer
of 2012, ALDN replaced Vaisala’s Impact sensors, which detect lighting flashes, with
Time-Of-Arrival (TOA) sensors (provided by TOA Systems, Inc. Melbourne, FL, USA),
which record lightning strikes. A comparison study conducted by the AFS, reported on-
line (at https://oasishub.co/dataset/alaska-historical-lightning-from-1986-to-2017-alaska-
interagency-coordination-centre accessed on 25 March 2024), found that the new TOA
ALDN detects about 2.25 times more lightning events than the older Vaisala sensors. About
60% of this increase is attributable to the difference in detecting strikes vs. flashes (a flash
can contain multiple strikes), with the remaining 40% increase resulting from an improved
detection efficiency, expanded spatial sensor coverage, and a longer detection range. Since
the TOA sensors will continue to be used in the future, we decided to exclude from our
analysis all lightning flash data collected by the Vaisala Impact sensors prior to 2012.

2.2. Statistical Methods and Procedures of Model Development

Lightning strikes are binomially distributed events, meaning that lightning’s occur-
rence is a variable with only two possible outcomes, 0 or 1 (i.e., absent or present). The
probability of binary variables can be described by logistic equations or sigmoid func-
tions. Our model employs logistic regression, which uses a supervised machine learning
algorithm that performs binary classification tasks by predicting the probability of the
occurrence of an event [22]. The model development proceeded in four stages.

First, lightning data and NARR weather fields were aggregated and re-projected on
a 20 km resolution grid. For NARR data, each month over the ConUS, and May through
to September over AK, was represented by an average diurnal cycle with a 3 h resolution
containing 8 temporal bins. Logistic equations for the probability of lightning strikes
were derived for each temporal bin of every fire season month. Since AK has virtually no
lightning events during the cold fall–winter season, we did not derive lightning forecast
equations for the period from the 1 October to the 30 April for this area. In an effort to

https://oasishub.co/dataset/alaska-historical-lightning-from-1986-to-2017-alaska-interagency-coordination-centre
https://oasishub.co/dataset/alaska-historical-lightning-from-1986-to-2017-alaska-interagency-coordination-centre
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improve the overall skill of the lightning forecast model, given the large geographic extent
of the lower 48 states, the ConUS domain was divided into 10 subregions by taking into
account the differences in its latitude, topography, fuels, climate, and soil moisture regimes
(Figure 1). A single region was employed for AK to allow sufficient lightning events to be
included in the analysis.
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for ConUS. The gray background mesh depicts the 20 km grid used in this study.

The second step of data processing involved the creation of weather and lightning
climatologies for each temporal bin in every respective month, using 27-year-long data
records for the ConUS and 10-year records for AK.

Thirdly, a PCA process known as “varimax/orthogonal rotation” [23] was applied to
the gridded NARR and lightning climatological datasets to analyze 611 potential meteoro-
logical drivers (predictors). The PCA reduced the large cohort of 3D meteorological drivers
to a smaller subset of 13 statistically significant lightning predictors (principal components).

Finally, logistic regressions were performed using the first 13 PCs along with the
lightning climatologies from every region and temporal bin to derive predictive equations
for calculating the probabilities of “one or more” and “10 or more” strikes. The logistic
equations have the following general form:

P =
1

1 + e−∑ wi βi
(1)

where P is the probability of a lightning strike, βi is the ith predictor (PC), and wi is the
estimated regression coefficient (weight) for that predictor. The “R” statistical package [24],
an open source software, was utilized to perform both the PCA and the logistic regressions.

The above statistical procedure, combining PCA with logistic regression to predict
lightning, was chosen instead of building a detailed process-oriented model using cloud
microphysics for two reasons: (a) the current mechanistic understanding of lightning’s
generation is not detailed enough to allow for the development of accurate lightning-
prediction models from “first principles”; and (b) the historical, climatological datasets of
coarse spatial resolution (20–32 km), such as NARR, available for model parameterizations
do not contain information about cloud microphysical properties, which typically vary
on spatial scales of tens of meters. Furthermore, our statistical procedure was found by
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previous research to be among the most successful techniques available for operational
lightning forecasting [12].

2.3. Model Verification Procedure

The model’s performance was evaluated using independent meteorological and light-
ning data from 2018 for the ConUS and from 2022 for AK. These were data not included
in the statistical parametrization of the logistic lightning equations. The meteorological
drivers for the verification came from two sources: NARR reanalysis fields and GFS grids.
To avoid the biases introduced by forecast weather fields and allow a comparison between
the NARR-driven 0–3 h forecast and GFS-driven lightning forecasts, we used GFS data
from the same 0–3 h initialization period. Since GFS is an operational model run every 6 h
that produces 7-day forecasts, it was ideal for incorporation into a 7-day forecast product.
For this reason, the skill of the lightning model was also evaluated under forecast weather
conditions, where projected GFS fields of up to 7 days were used.

The model verification procedure employed two primary statistical metrics: (a) reli-
ability diagrams (RDs), comparing model-forecast probabilities to the observed relative
frequencies of lightning strikes [25]; and (b) Receiver Operating Characteristic (ROC)
curves, quantifying the relationship between the False Positive Rates (on the X axis) and
True Positive Rates (on the Y axis) at different classification thresholds [26]. A key feature
of the ROC diagrams is the Area Under the Curve (AUC), which provides an aggregate
measure of the model’s performance across all possible classification thresholds. The closer
the AUC is to 1.0, the higher the spatial accuracy of the model’s forecasts. RDs and ROC
curves were calculated for the model predictions driven by observed weather fields from
NARR and GFS (0–3 h initialization) and forecast GFS weather fields extending over 7 days.

As a means of qualitative assessment, we generated maps overlaying the forecast
lightning probabilities with the observed number of lightning strikes in each 20 km grid
cell. Specifically, we plotted the 24 h maximum lightning forecast probabilities against the
observed lightning strikes in the same time period.

3. Results

The PCA yielded 13 principal components (PCs) that were employed as predictors
for the 10 ConUS regions depicted in Figure 1, for AK, and for all 3 h bins in every month.
Each PC represents a linear combination of participating base variables. The components
covered variables near the surface as well as at vertical pressure levels from 700 mb to
100 mb, in 50 mb increments (Figure 2). Our PCA method with orthogonal rotation found
similar terms and grouped them together into individual components. Note that CAPE (the
Convective Available Potential Energy) was singled out as a separate PC despite the fact
that it is derived from the variables in components 1, 3, 5, 8, and 11. This is because CAPE
experiences a non-stationary relationship with these variables depending on the vertical
temperature and moisture profiles. Hence, these components do not have a persistent,
one-way correlation with CAPE and can either increase or decrease the value of CAPE.

The 13 PCs collectively explained nearly 61% of the total variance of CG strikes in all
regions and time periods over the ConUS (Figure 2). The temperatures and geopotential
heights at every 50 mb vertical pressure level at a grid point emerged as the strongest
predictor among the 13 PCs, accounting for 14.6% of the observed variance in CG strikes.

Logistic equations quantifying the probabilities of CG strikes were derived using the
multi-year climatologies from each 3 h diurnal bin of every month and region, employing
the 27-year-long records of NARR and lightning grids for the ConUS and 10-year long data
records for AK. Each month of the year was described using eight logistic equations per
region, i.e., one equation for every 3 h bin of the average 24 h diurnal cycle for that month.
This produced 960 equations for the ConUS and 40 equations for AK.

The output files from the “R” software (Version 4.2.2) containing the lightning predic-
tion equations were combined with the 3D meteorological fields generated by the GFS to
produce operational lightning probability forecasts at 20 km resolution over 7 days for the
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ConUS and AK. The forecasts were delivered in a graphic format to field users through a
customized website [27].

Fire 2023, 6, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. The 13 main lightning predictors (principal components) produced by the PCA and the 
amount of the variance in CG strikes explained by them over the ConUS. 

The 13 PCs collectively explained nearly 61% of the total variance of CG strikes in all 
regions and time periods over the ConUS (Figure 2). The temperatures and geopotential 
heights at every 50 mb vertical pressure level at a grid point emerged as the strongest 
predictor among the 13 PCs, accounting for 14.6% of the observed variance in CG strikes. 

Logistic equations quantifying the probabilities of CG strikes were derived using the 
multi-year climatologies from each 3 h diurnal bin of every month and region, employing 
the 27-year-long records of NARR and lightning grids for the ConUS and 10-year long 
data records for AK. Each month of the year was described using eight logistic equations 
per region, i.e., one equation for every 3 h bin of the average 24 h diurnal cycle for that 
month. This produced 960 equations for the ConUS and 40 equations for AK. 

The output files from the “R” software (Version 4.2.2) containing the lightning prediction 
equations were combined with the 3D meteorological fields generated by the GFS to produce 
operational lightning probability forecasts at 20 km resolution over 7 days for the ConUS and 
AK. The forecasts were delivered in a graphic format to field users through a customized web-
site [27]. 

Model Verification 
Figure 3 compares side-by-side reliability diagrams of NARR- and GFS-driven 3 h 

forecasts for June, July, and August of 2018 over the ConUS, employing independent me-
teorological and lightning data. The histograms visible in the lower right corner of the 
reliability diagrams depict the areal fraction of the forecasts in each probability “bin”, rep-
resented by the open circles on the diagrams. These histograms reveal that the vast ma-
jority of forecasts refer to lower probabilities, with large areas having a near-zero chance 
of lightning. Figure 4 shows the ROC curves and corresponding AUCs for the same data. 
The decimal values on the ROC curves represent the sample’s forecast probabilities of 
lightning and show where such probabilities fall with respect to the Hit Rate (the fraction 
of grid points with a correct prediction) and False-Alarm Rate (the fraction of grid points 
with an incorrect prediction). For example, in Figure 4, 0.1 refers to a 10% forecast chance 
of lightning, which has a Hit Rate of ~48% and a False-Alarm Rate of ~7%. The lower the 
False-Alarm Rate is for any given Hit Rate, the larger the AUC and the better the forecast. 
AUC values that are close to or slightly higher than 0.9 indicate excellent-to-outstanding 
model accuracy in predicting the probabilities of one or more CG lightning strikes over 
the ConUS [28]. Surprisingly, the GFS-driven forecasts (using the initial 3 h) performed 

Figure 2. The 13 main lightning predictors (principal components) produced by the PCA and the
amount of the variance in CG strikes explained by them over the ConUS.

Model Verification

Figure 3 compares side-by-side reliability diagrams of NARR- and GFS-driven 3 h
forecasts for June, July, and August of 2018 over the ConUS, employing independent
meteorological and lightning data. The histograms visible in the lower right corner of
the reliability diagrams depict the areal fraction of the forecasts in each probability “bin”,
represented by the open circles on the diagrams. These histograms reveal that the vast
majority of forecasts refer to lower probabilities, with large areas having a near-zero chance
of lightning. Figure 4 shows the ROC curves and corresponding AUCs for the same data.
The decimal values on the ROC curves represent the sample’s forecast probabilities of
lightning and show where such probabilities fall with respect to the Hit Rate (the fraction
of grid points with a correct prediction) and False-Alarm Rate (the fraction of grid points
with an incorrect prediction). For example, in Figure 4, 0.1 refers to a 10% forecast chance
of lightning, which has a Hit Rate of ~48% and a False-Alarm Rate of ~7%. The lower the
False-Alarm Rate is for any given Hit Rate, the larger the AUC and the better the forecast.
AUC values that are close to or slightly higher than 0.9 indicate excellent-to-outstanding
model accuracy in predicting the probabilities of one or more CG lightning strikes over the
ConUS [28]. Surprisingly, the GFS-driven forecasts (using the initial 3 h) performed slightly
better than those driven by NARR data. This might be a result of recent code upgrades
made to the GFS model by NOAA.

Figure 5 depicts the RDs of the 24 h maximum lightning probabilities for forecast
days 1, 3, and 7 in August of 2018 over the ConUS. It is important to note that forecast
probabilities greater than 0.7 only occur in less than 0.1% of grid points and that 99.9%
of the ConUS area exhibits a chance of lightning strikes less than 0.7 (70%). Thus, the
larger deviations of the red curves from the 1:1 line for probabilities greater than 0.7 which
are visible in Figures 3 and 5 are essentially immaterial with regard to the actual model’s
performance. Figure 5 illustrates that the model also yielded reliable predictions up to
7 days in advance when using the forecast GFS weather fields as drivers.
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Figure 6 depicts a reliability diagram of the NARR-based lightning forecasts for Alaska,
covering the entire fire season (1 May–31 August) of 2022. Once again, the red curve is very
close to a perfect model data match (the 1:1 line) for all probabilities that are meaningfully
represented over the AK domain.
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Figure 8 shows the RDs and ROC curves for lightning predictions over AK, extending
over 168 h and driven by the GFS forecast weather fields in June and July of 2022. Although
more distant forecast periods might appear closer to the 1:1 “perfect” line in the RDs, the
ROC curves show a gradual decrease in forecast accuracy (measured by the relationship
between the Hit Rate and False-Alarm Rate), as each curve for later forecast periods has a
smaller AUC value compared to earlier forecast periods. The AUC values decrease from
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0.9328158 at forecast hours 0–3 to 0.8697127 at forecast hours 168–171. This indicates that
the accuracy of lightning predictions deteriorates somewhat with the increasing uncertainty
of numerical weather forecasts over time. Still, the AUC values indicate an outstanding
model performance up to forecast hour 99 and excellent accuracy up to hour 147.
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Figure 8. Reliability diagrams (left panel) and ROC curves (right panel) of predicted probabilities of
1 or more lightning strikes occurring over Alaska for all 3 h periods between 1 June and 31 July 2022
based on forecast weather fields provided by the GFS. The AUC values are shown inside the color
legend in the right panel.

Figure 9 displays the observed lightning data overlaid on predicted 24 h maximum
lightning probabilities for the ConUS for forecast days 1, 3, 5, and 7, beginning on 15 July
2018. Figure 10 shows similar overlays for AK during two high-intensity lightning events
that occurred on 4 June and 20 June in 2022. These overlay maps visually illustrate the
ability of the lightning prediction model to successfully capture regions of intense lightning.
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point, the amount of low-level atmospheric moisture, and the wind speed/wind direction. 
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Figure 9. Maximum probability of lightning (color contours) predicted by the model over 24 h
periods (12:00 to 12:00 UTC) for forecast days 1, 3, 5, and 7, beginning on 15 July 2018, overlayed onto
observed lightning strikes (numbers in white). Contours delineate: 1%—red, 2%—green, 5%—blue,
10%—yellow, 30%—cyan, 50%—magenta, and 70%—brown.
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Figure 10. Lightning observations (number of strikes per grid cell in white) overlaid onto the first
24 h maximum probability forecast over AK, shown as color contours of the strike probabilities for
4 June (left panel) and 20 June (right panel), 2022: 1% (red); 5% (green); 10% (blue); 20% (yellow);
30% (cyan); and 50% (magenta).

4. Conclusions

We presented here the first and only operational, gridded lightning probability forecast
algorithm for the continental USA and Alaska, derived from 29-year-long data records, that
runs on a uniform 20 km continental grid. The statistical procedure of model derivation
revealed that the occurrence of lightning strikes primarily depends on three factors: the
temperatures and geopotential heights across the pressure levels at a grid point, the amount
of low-level atmospheric moisture, and the wind speed/wind direction. These physical
variables apparently aid in controlling the vertical separation of electric charges in the lower
troposphere during thunderstorms, at a 20 km resolution, increasing the voltage potential
between the cloud deck and the ground to a level that triggers electrical discharges.

The results obtained from the model verification performed employing independent
data indicate that probabilistic predictions of CG lightning strikes are feasible and can
be statistically reliable up to 7 days in advance when driven by output from operational,
numerical weather forecast models such as the GFS. Hence, this new lightning prediction
algorithm can be incorporated into future forecasting systems of fire ignition probabilities
to quantify the risk of naturally occurring wildfires at a national level.
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