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Abstract 

Large wildfires, the dominant natural disturbance type in North American forests, 

can cause significant damage to human infrastructure. One well-known approach to 

reduce the threat of wildfires is the strategic removal of forest fuels in linear fire-

breaks that segment forest landscapes into distinct compartments. However, limited 

human and financial resources can make it difficult to plan compartmentalization 

effectively. In this study, we developed a simulation-optimization approach to assist 

with the planning of wildfire risk mitigation efforts in the Red Rock-Prairie Creek 

area of Alberta, Canada, a rugged, fire-prone landscape. First, we used a spatial 

fire growth model to calculate a matrix of fire spread likelihoods between all pairs 

of locations in the landscape and used this matrix to guide the allocation of fire-

breaks. Then, we formulated a firebreak compartmentalization problem to reduce 

the fire spread potential in the landscape. We depicted the landscape as a network 

of patches containing hazardous fuels and solved a critical edge removal linear 

programming problem (CERP) to partially fragment the landscape and minimize 

the potential of wildfires to spread to adjacent areas. We compared the CERP with 

other fuel treatment strategies intended to minimize fire-threat measures such as 

burn likelihood and fuel exposure. Compared to these strategies, the CERP solu-

tions demonstrated better capacity to segment the landscape into evenly spaced 

compartments and effectively minimized fire spread along the prevailing wind 

paths. Our solutions provide several strategies for reducing the risk of wildfires to 

forest habitat and could assist strategic planning of wildfire mitigation activities in 

other regions.
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1. Introduction

Wildfires are dominant disturbances in the montane and boreal forests of North 
America [1–4] and have caused significant damage to human wellness, infrastruc-
ture and commercial timber supply [5–8]. In Canada, wildfires burn approximately 
two million hectares of forest annually, with ≈97% of the total area burned by large 
(104–106 ha) fires [3]. The possible damages and subsequent prevention costs 
are expected to worsen given that wildfire frequency in North American forests is 
increasing due to climate change [4,9–13], as exemplified by the record-breaking 
2023 fire season [14]. In the United States alone, the total economic burden (costs 
and losses) associated with wildfires may exceed $348B annually [15].

In forest landscapes, fire management policies, in addition to traditional reactive 
suppression strategies, institute proactive measures, such as prescribed burns or 
mechanical treatments, that aim to reduce wildfire hazard by disrupting the spatial 
connectivity of forest fuels across the landscape [16–19]. Designing and implement-
ing effective fuel treatment systems is difficult and costly in complex landscapes 
[20–23]. For example, the USDA Forest Service has estimated that adequate 
reduction of forest fuels, even if limited to high-priority areas, would cost the U.S. 
$5-6B annually [24,25]. In Canada, hazardous forest fuel treatment strategies are 
implemented at the national and provincial/territorial level through programs like 
FireSmart Canada (https://firesmartcanada.ca). Fuel treatments vary substantially 
among regions of Canada but overall remain relatively sparse compared to other 
wildfire-prone countries [26].

Development of functional fuel treatment systems can be complicated by uncer-
tain fire weather conditions and insufficient resources that force decision-makers 
to allocate only a portion of the necessary firebreaks across landscapes [20,23]. 
Furthermore, the impacts of stand-level fuel reduction measures and other preven-
tive treatments are not always predictable, particularly for landscapes subject to 
fast-spreading fires or high ignition rates [22,27]. One way to deal with the complex-
ities of firebreak system planning is to segment the forest landscape into compart-
ments delineated by firebreaks that reduce or modify fuel content [17,28–31]. In this 
setting, the firebreaks are intended to restrict the damage from large fires, if such 
occur, by containing them within individual partitioned areas.

Wildfire prevention and fuel reduction planning have been aided by optimization 
models [16,32,33]. For example, Konoshima et al. [34] integrated a fire behavior 
model with a stochastic dynamic programming model to find an optimal pattern of 
timber harvest and fuel management under fire risk in a hypothetical landscape. 
Wei [35], Wei et al. [36] and Wei and Long [37] proposed fuel treatment models to 
minimize expected losses from wildfires using estimates generated with a stochas-
tic fire prediction model. Chung et al. [38] applied a similar approach to minimize 
expected losses, incorporating both fire and vegetation growth models into a fuel 
treatment planning model. Moreover, proposed models have implemented a range 
of objectives: minimizing burned area in the wildland-urban interface [16], protecting 
industrial infrastructure and wildlife corridors [39], minimizing fuel treatment costs 
[40], reducing the probability of high-severity fires [41] and minimize damage in 
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wildland-urban interface areas [42]. Several models have combined fire risk reduction goals with timber harvesting objec-
tives, sometimes by incorporating spatially explicit harvest planning [43–45].

Fuel treatment planning models have been proposed to minimize fuel connectivity across landscapes, including some 
models focused on firebreak placement [46] and protecting wildlife habitat while reducing fuel connectivity [47]. Optimal 
planning of contiguous fuel breaks has been addressed with a network flow problem [48] and by solving a critical node 
detection problem to fragment a fuel network [49,50]. Other proposed approaches included a Stackelberg game model to 
minimize the impact of the worst-case wildfire outcomes [51], a multi-objective breadth-first prioritization of fuel manage-
ment within a linear network of fuel breaks in the western U.S. [31] and applications of deep reinforcement learning and 
metaheuristic approaches to find optimal firebreak designs [52,53].

Firebreak allocation requires an understanding of the behavior of fires not only in terms of their burn probabilities at 
a particular location, but also where and how far they might spread in a landscape [54]. A common method to approxi-
mate potential losses in a wildfire-prone area is to estimate fire intensity and map hazardous fuel patches. Here, a patch 
refers to a discrete spatial location in a landscape, such as a cluster of forest stands (e.g., depicted as a map cell/pixel). 
Examples of patch-based measures include the likelihood that fuel is present within a chosen distance from a given 
patch [55], the estimated burn probability [56–58], the expected burn area for fires ignited in a given patch [48] or large 
fire probabilities [59,60]. Patch-based measures provide one hazard value per patch (or pixel) and are often presented to 
decision-makers as maps. While convenient, these measures are insufficient to communicate information about possible 
fire spread directions, distances, or associated spread probabilities between distinct locations, thereby diminishing their 
utility to support the planning of fuel reduction measures [22,27,61]. Notably, predicting possible fire spread directions and 
likelihoods is essential for identifying the possible fire spread corridors in a landscape.

In this study, we compared risk-mitigation fuel reduction strategies based on different performance criteria in a wildfire- 
prone forest landscape of northwestern Alberta, Canada. We evaluated strategies aimed at reducing fire spread proba-
bilities by minimizing connectivity between patches with hazardous fuels and intersecting major fire spread paths with a 
network of linear fuel breaks that partition the landscape into compartments. We compared these strategies with a general 
strategy that aims to reduce area-based fire hazard measures – such as the burn probability or the likelihood of fuel pres-
ence within a 500-m distance from a given patch – without considering fuel connectivity or possible fire spread corridors. 
We solved the fuel connectivity problem with a proposed linear programming model that allocates firebreaks to interdict 
the potential fire spread corridors in the landscape.

2. Methods

2.1. Study area

We have explored landscape compartmentalization strategies in the Red Rock-Prairie Creek region of northwestern 
Alberta, Canada (Fig 1).

This landscape includes Rocky Mountains’ upper foothills and lower subalpine ecoregions [67,68]. The area is located 
within the Peace River basin of Alberta and includes moderate elevations up to 1,750m in the southern portion of the 
region bordering the Rocky Mountains [68]. The region’s forests are dominated by Engelmann spruce (Picea engelman-
nii) and subalpine fir (Abies lasiocarpa) at higher elevations in the subalpine zone, and lodgepole pine (Pinus contorta) at 
lower elevations. Mixedwood stands are composed of aspen (Populus tremuloides), balsam poplar (Populus balsamea), 
white spruce (Picea glauca), and lodgepole pine (P. contorta). The area has been used by forest industry for timber supply 
[68]. The area has also been subject to oil and gas exploration activities that have left a network of harvested linear fea-
tures (seismic lines) [69].

Fire occurrence risk in the study area was estimated as moderate compared to other boreal regions [68]. Winds 
tend to blow from west-southwest, which influences the dominant fire spread directions (Fig 2a). The historical fire 
regime was characterized by frequent small to medium-sized fires and rare large fires [68] (Fig 1). Fire return intervals 
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ranged between 80 and 300 years in the subalpine zone in the southern part of the region and between 45 and 476 
years in the lower elevation portions of the region [68,70]. Presently, the area has accumulated significant amounts 
of mature and overmature (100 + years) conifer stands, which have high susceptibility to fires. Approximately 40% 
of the area was characterized as high to extreme wildfire behavior potential [68]. In the lower-elevation areas in the 
northeastern part of the region, human-caused fires peak in May, whereas lightning-caused wildfires peak later in the 
summer. The higher-elevation areas in the southwest experience mostly lightning-caused wildfires, with the peak fire 
season between May and August [71]. The Government of Alberta has initiated planning efforts to mitigate wildfire risk 
in the region [72].

Fig 1. Study area in the Red Rock-Prairie Creek region, Alberta, Canada. Base map data used: administrative boundaries [62]; historic fires [63,64], 
waterways [65]; digital elevation model [66]. Mapping software used: ESRI ArcMap 10.

https://doi.org/10.1371/journal.pone.0321722.g001

https://doi.org/10.1371/journal.pone.0321722.g001
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2.2. Depicting a forest landscape as a fuel network graph

We conceptualized the forest landscape in the study area as a fuel network graph G divided into N patches i with 
combustible fuels, i ∈ N, (nodes hereafter). A node may include a cluster of multiple forest stands and is considered a 
firebreak allocation spatial unit. For a pair of adjacent nodes i and j that are not separated by natural fire barriers, we 
depicted the fuel connectivity as a set E of connecting edges (arcs) ij which defined possible vectors of fire spread 
between adjacent nodes i and j, ij ∈ E (see Table 1 for symbolic notations). We chose a hexagonal node grid to min-
imize the connectivity bias that may be introduced by using irregularly shaped, different-area polygons to delineate 
forest stands. We assumed the firebreak allocation decisions to be made at the scale of the hexagonal nodes, with 
the hexagon size chosen to be sufficient for the allocated treatments to reduce the spread of high-intensity fires in 
the area.

A fire could potentially spread through pairs of nodes i and j. The maximum fire spread extent from node i to other 
nodes j can be limited by weather, terrain or other fire behavior constraints. For each node i, we defined a fireplain set of 
other nodes j, Ωi, to which fires could potentially spread from i in realistic circumstances (Fig 3a, 3b). The fireplain concept 
has been widely used in wildfire science to describe the land area around patch i where a wildfire can spread from i during 
a designated timespan [73]. The fireplain configuration and size depend on the connectivity of fuels, terrain and local 
weather patterns, which may promote or impede the spread of fires. The fireplain set Ωi around node i is the union of the 
footprints of all fires which may be ignited in i and spread elsewhere (Fig 3a).

Each fireplain Ωi around ignition node i included the collection of origin-destination node pairs ij depicting where a wild-
fire could spread from i. We identified these node pairs with the binary parameter qij = 1, qij ∈{0,1}, which indicated that fire 
could spread from i to j (Fig 3b), and the likelihood values pij > 0, pij ∈[0;1], that a fire spreads from i to j (Fig 3c). We used 
N × N matrices of qij and pij values to depict possible fire spread between the nodes in fuel network graph G.

We conceptualized firebreak allocation as a partitioning of the fuel network G by firebreaks to minimize the number of 
node pairs ij with possible fire spread (i.e., with qij = 1 or pij > 0). This is consistent with a common strategy for managing 
fire-prone landscapes by reducing fuel connectivity between forest patches through interdiction of key fire spread paths 

Fig 2. Wind rose diagrams for the study area: a) prevailing winds; b) fire spread indicators qij between node pairs i, j derived from the fire 
growth model outputs.

https://doi.org/10.1371/journal.pone.0321722.g002

https://doi.org/10.1371/journal.pone.0321722.g002
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[47–49,74,75]. We assumed that a pair of nodes i,j was connected if network graph G contained a path between them and 
fires could potentially spread from i to j (so qij = 1 and pij > 0, and j was located in fireplain Ωi around i).

2.3. Modelling the wildfire behavior in a forest landscape

The development of a firebreak system requires knowledge of how wildfires may spread in the landscape. In our setting, 
we needed to identify all possible ways a wildfire could ignite and spread between nodes in fuel network graph G. A com-
mon way to depict possible fire behavior in complex landscapes is through application of spatial fire growth models. By 
simulating stochastic ignition events and subsequent fire propagation from the ignition locations, coupled with the impacts 
of fuel conditions and weather, these models generate large sets of plausible ignition locations and fire footprints in a 
landscape as the stochastic realizations of a burn year [60,76–81]. Fire growth models such as Burn-P3 [76] or FSim [77] 
simulate stochastic ignition events and the fire propagation from the ignition locations [60,78,79] coupled with the impacts 
of fuel conditions and weather generate multiple fire behavior scenarios [80]. Fire growth models have been developed for 
many parts of the world, including the Burn-P3 [76], Prometheus [81] and Cell2Fire models for Canada [82] and the FSim 
model for the U.S. [77]. In this study, we applied the Burn-P3 model [76] to generate stochastic ignitions and fire spread 
configurations in the study area. The Burn-P3 model uses the Prometheus algorithm [70] to simulate fire growth. For each 
replication that depicts a fire season, Burn-P3 generates the ignition locations and footprints of individual fires (see details 
in S1 Appendix).

We generated 60,000 independent simulations of a burn year using the Burn-P3 model, which was sufficient to stabilize 
the distribution of fireplain sizes. We described fuels using the Fire Behavior Prediction (FBP) System [83]. Burn-P3 mod-
ifies fuels based on seasons that determine the presence of deciduous foliage and curing conditions for grass fuels and 
was parameterized with fuel and terrain data at 100-meter resolution to capture fine-scale fuel heterogeneity. We used the 
WindNinja software [84] to calculate the effect of local topography on wind directions and wind speeds (see S1 Appen-
dix). To estimate fire weather conditions, we extracted weather data between 2017 and 2019 from Alberta government 
weather stations located within the study area buffered by a 20-km radius. To simulate the duration of burning of simulated 

Table 1. Summary of the model variables and parameters.

Symbol Parameter/ variable name Description

Sets:

N Nodes (forest patches) i,j,k in landscape network G – potential fuel treatment locations i, j, k ∈ N

E Edges connecting adjacent nodes ij in landscape network G E ⊂ N × N

NG(i) Connected neighborhood which includes node i NG(i)∈ N

Ωi Nodes j – members of a fireplain around node i (potential spread destinations of fires ignited in i) Ωi ∈ N

Decision variables:

xi Node deletion binary variable (xi = 0 if node is removed and xi = 1 otherwise) xi ∈{0,1}

yij Edge arc deletion binary variable (yij = 0 if edge arc ij is removed and yij = 1 otherwise) yij ∈{0,1}

uij Binary variable defining that nodes i and j are not removed and there is a path connecting
i and j

uij ∈{0,1}

S Largest fireplain size in landscape network G S > 0

Parameters

pij Fire spread probability from node i to node j (based on the fire growth model simulations) pij ∈ [0;1[

qij Fire spread binary indicator between nodes i and j: qij = 1 for pij > 0 and qij  = 0 otherwise qij ∈ {0,1}

B Node (or edge) removal budget limit B > 0

φi
Node-based fire hazard measure (burn probability, fuel exposure or the fireplain size, Ωi) φi > 0

f Scaling factor (small value) f 
 
= 0.01

M Large positive (big-M) value M = |N|

https://doi.org/10.1371/journal.pone.0321722.t001

https://doi.org/10.1371/journal.pone.0321722.t001
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wildfires, we sampled the number of spread days per fire from the historical fire database [85]. The probability of ignitions 
was stratified spatially based on historical lightning strikes data [86], and the proximity to roads (S1 Appendix).

To act as a strategic fire mitigation measure, the firebreaks needed to be sufficiently wide to ensure their effectiveness 
against high-intensity fires. High-intensity fires in boreal forests are characterized by the production of firebrands that 
travel and ignite spot fires [87,88]. To limit the uncertain effect of fire spotting, a sufficient firebreak width would need to 
be maintained across all allocated segments. We set the hexagon size (the firebreak allocation unit) to 400 ha, which 

Fig 3. Delineating a fireplain: a) simulated wildfire perimeters with the ignition points in node i; b) delineating the fireplain Ωi around node i. 
All nodes j within a fireplain Ωi around i are assigned the unary fire spread indicators qij; c) estimating the fire spread probabilities pij from node i to nodes 
j from the perimeters of simulated fires (an example of three simulated fires over 100 independent replications of a burn year); d) equivalent removal of 
nodes vs. edges to allocate a linear firebreak segment.

https://doi.org/10.1371/journal.pone.0321722.g003

https://doi.org/10.1371/journal.pone.0321722.g003
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yielded a cross-sectional width of 2.15 km that was sufficient to account for spotting from fires with burn intensities up to 
55,000kW/m (based on the spotting distance model from [88]), which accounted for 99.9% of burned locations simulated 
with the fire growth model.

We applied an approach from our previous work [50] to generate the fireplain sets Ωi from the fire growth model out-
puts. For each node i, we assembled all fires from Burn-P3 simulations that were ignited in i (Fig 3a) and delineated the 
fireplain Ωi around i as a union of the footprints of these simulated fires (Fig 3b). The fireplain set accounts for all fuel dis-
continuities (e.g., lakes or non-combustible terrain) as well as factors that may have facilitated fire spread from i. Destina-
tion nodes j in fireplain Ωi, i ≠ j, indicate the locations to which fires ignited in i could spread. We estimated the likelihoods 
of fire spread from i to j, pij, as the total number of fires in the fire growth model simulations that were ignited in i and able 
to spread to j, divided by the number of fire growth model replications. All node pairs i,j with pij > 0 were assigned the 
binary indicator values qij = 1. The fuel network included 834 nodes and 4788 edges (Fig 4a, 4b). We composed 27,898 
binary fire spread indicators qij and their corresponding likelihoods pij between node pairs i,j from the fire growth model 
outputs (Fig 4c).

2.4. Allocating the firebreaks with the network optimization approach

2.4.1. Fire risk mitigation criteria. We measured the fire spread potential in the fuel break allocation scenarios 
as the total number of node pairs i,j between which fire spread was possible (i.e., with qij = 1) (Table 2). A similar metric 
denoted the expected number of node pairs i,j with fire spread as the sum of the fire spread probabilities pij between 
all node pairs after firebreak placement. To characterize the upper limit of the potential fire spread area, we calculated 
the maximum size of the fireplain set, S, after firebreak placement. Finally, we evaluated three popular patch-
based measures which provided single-dimensional fire hazard values for nodes i: fireplain size |Ωi| before firebreak 
placement, burn probability [57,60] and the probability of fuel presence within a 500-meter radius from a given location 
[55] (Fig 4d–4f).

2.4.2.  Problems 1 and 2: Firebreak placement via removal of network nodes. Our problem 1 (from our previous 
work [50]) allocated firebreaks in fuel network graph G by removal of nodes i, which also disrupted the fuel connectivity 
through those nodes (Table 2). This formulation was based on a critical node detection problem (CNDP), which finds the 
key nodes in a network whose removal maximally degrades its connectivity according to a chosen criterion, such as the 
number of location pairs with possible paths between them [50,89–92] or the potential for wildfire transmission to human 
infrastructure [39].

Firebreak selection in the CNDP was managed by the node removal binary decision variable, xi, which defined whether 
node i was not deleted from network G (xi = 1 and xi = 0 otherwise). For each pair of nodes i and j, another binary variable, 
uij, i,j ∈ N, indicated that nodes i and j were not removed from network graph G (i.e., uij = 1 when xi = xj = 1) and that there 
was a fire spread path connecting i and j, such that, for any pair of adjacent nodes k and l on that path, xk = xl = 1. If uij = 1, 
nodes i and j were located within the same compartment with the possibility of a fire spreading from i to j, while uij = 0 
indicated that i and j were located in separate compartments. Fires could spread between nodes i and j in both directions 
with different likelihoods, so node j could be a part of a fireplain Ωi around node i, while i might not be a part of a fireplain 
Ωj around j. The uij and uji variables could take different values for node pairs i,j, thus helping to incorporate the factors 
influencing directional spread of fires, such as prevailing winds.

The total number of nodes that could be removed to create the compartments was limited by budget level B. Problem 
1 objective (1) minimized the number of possible path connections (uij = 1) between node pairs in network G, which also 
minimized the fuel network connectivity, i.e.:

 
min

i∈N∑ j∈Ωi∑
j̸=i

uijqij
 (1)
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s.t.:

 
i∈N∑

(1 – xi) ≤ B (2)

Fig 4. Landscape network G: a) nodes i; b) edges ij; c) fire spread probabilities pij between node pairs i, j. The pij values between the adjacent 
nodes are not shown. Patch-based fire hazard measures, φi: d) burn probability; e) the likelihood of fuel presence within a 500-m radius of a given site 
(rescaled to 0-1 range); f) fireplain size. The network node data can be found in S2 Appendix. Mapping software used: Python Matplotlib 3.4 library.

https://doi.org/10.1371/journal.pone.0321722.g004

https://doi.org/10.1371/journal.pone.0321722.g004
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 uij ≥ xi + xj – 1 ∀ (i, j) ∈ E, i ̸= j, j ∈ Ωi  (3)

 
uij ≥ 1

M

k∈NG(i),
k∈Ωi,j∈Ωk∑

k ̸=j
ukj – (1 – xi) ∀ i ∈ N, j ∈ Ωi, i ̸= j, (i, j) /∈ E.

 (4)

The fireplain set Ωi limited the scope of decision variable uij and equations (1, 3, 4). Constraint (2) defined an upper 
bound on the number of the removed nodes. Constraint (3) ensured, for an adjacent connected edge between nodes i and 
j, that uij = 1 if neither node was removed. Constraint (4) ensured that nodes i and j were connected if there was another 
non-deleted node k, k ≠ j, in the connected neighborhood, NG(i), that included node i, as well as nodes with connections 
to i, such that k and j were connected. Equation (4) enforced transitive connectivity relationships between nodes in the 
network graph; for instance, if node i was connected to node j and j was connected to node k, then i was connected to k. 
The CNDP problem (1–4) was based on an efficient formulation proposed in [91,92], however it was proven to be NP-hard 
with no polynomial-time approximation [90,93].

In problem 1, all path connection variables uij within fireplains Ωi were treated as equal irrespective of the fire spread 
likelihoods between nodes i and j. Since the number of spread vectors between all node pairs in a landscape compart-
ment decreases (or increases) in quadratic proportion to the linear size of the isolated compartment, fragmenting the 
landscape into compartments tended to minimize the number of long spread vectors ij (which also reduced the spread of 
large fires).

Our CNDP problem 2 considered scenarios when information about fire behavior was sufficient to estimate the contin-
uous probabilities, pij, of fire spread between every pair of nodes i,j, pij ∈ [0;1]. We used the pij values as priority weights to 
rescale decision variable uij in the objective function equation (Table 2). The CNDP problem 2 was formulated analogously 
to problem 1 except the number of node pairs with fire spread paths ij in the objective equation was weighted by the likeli-
hoods of fire spread between i and j, i.e.,:

 
min

i∈N∑ j∈Ωi∑
j̸=i

uijpij
 (5)

Table 2. Optimal firebreak models 1-6.

Parameter characterizing 
fire spread from
node i to node j
(or fire hazard)

Objective function
(see Table 1 for
symbolic notations)

Problem type

Critical node 
detection problem 
(CNDP)

Critical edge 
removal problem 
(CERP)

Node removal to minimize the 
 patch-based fire
hazard measure, φi

Binary fire spread indicator 
between node pairs ij, qij

Max. fireplain size, S

min
i∈N∑ j∈Ωi∑

j̸=i
uijqij

Problem 1 Problem 3

min

[
S+ f

i∈N∑ j∈Ωi∑
j̸=i

uijqij

]
Problem 5

Fire spread
probability between nodes i 
and j, pij

min
i∈N∑ j∈Ωi∑

j̸=i
uijpij

Problem 2 Problem 4

Patch-based
fire hazard measure
in node i, φi

min
i∈N∑

xiφi

Problem 6:
φI = burn probability in site i
φI = fuel presence probability within a 500-m 
distance from a given site i
φI = fireplain size before firebreak placement

https://doi.org/10.1371/journal.pone.0321722.t002

https://doi.org/10.1371/journal.pone.0321722.t002
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s.t.: constraints (2–4).
Objective function (5) minimized the spread of fires with the highest pij values. Since the fire size distribution in forest 

landscapes generally follows a power law [94], objective (5) minimized the spread of the smallest, most frequent fires.
2.4.3.  Problems 3 and 4: Landscape partitioning via removal of network edges. Removing a node in problems 

1 and 2 implied the removal of fuels across the entire node area, which also removed all edges connected to that node. 
In practical conditions, firebreaks and other fuel barriers tend to be established as linear segments with fuel removals at a 
depth that is sufficient to reduce potential fire intensity enough for a fire to be contained [20,95]. To make the allocation of 
firebreaks less dependent on the node size, we reformulated models 1 and 2 as a critical edge removal problem (CERP) 
that disrupts fuel connectivity by removing edges between adjacent nodes (Table 2). Edge removal was controlled by 
a binary decision variable, yij, that defined whether edge arc ij connecting adjacent nodes i and j was not deleted from 
network G (yij = 1 and yij = 0 otherwise, i,j ∈ E). Removing an edge ij was analogous to establishing a linear firebreak 
segment along the border between nodes i and j. Subsequently, the critical edge removal problem 3 (CERP) was written 
as follows:

minimize objective (1),
s.t.:

 uij ≥ yik + ukj – 1 ∀ i ∈ N, k ∈ NG(i), j ∈ Ωi, j ∈ Ωk, i ̸= j, (6)

 uij ≥ yij ∀ (i, j) ∈ E, i ̸= j  (7)

 yij = yji ∀ (i, j) ∈ E, i ̸= j (8)

 

∑
i,j∈E
i<j

(1 – yij) ≤ B

 (9)

 

∑
i,k∈E
k̸=j

(1 – yik)+
∑
j,l∈E
l̸=i

(1 – yjl) ≥ 1 – yij ∀ (i, j) ∈ E, i ̸= j.

 (10)

Constraint (6) is analogous to constraint (3) and ensured that nodes i and j were connected (i.e., uij = 1) if there was a 
non-deleted node k in the connected neighborhood of i, k ∈ N

G
(i), k ≠ j, such that k and j were connected. Constraint (7) 

ensured that adjacent nodes i and j were connected (i.e., uij = 1) if there was a non-deleted edge between i and j, so yij = 1. 
Constraint (8) specified that the removal of arcs between nodes i and j occurred in both directions when a firebreak was 
installed between i and j. Constraint (9) defined an upper bound B on the number of edges that could be removed. Con-
straint (10) prevented removal of isolated single-edge segments and required that removal of an arc ij was accompanied 
by removal of at least one more arc between node i (or node j) and another node adjacent to i or j. Subscript k denoted 
the other nodes adjacent to node i, k ≠ j, and subscript l denoted the other nodes adjacent to node j, l ≠ i.

Like CNDP problem 2, the CERP problem 4 applied the continuous fire spread likelihoods pij instead of the binary indi-
cators qij between node pairs ij and minimized the risk of spread of the most frequent fires (Table 2). CERP Problem 4 was 
formulated as minimizing objective (5), subject to constraints (6–10).

2.4.4.  Problem 5: Reducing the largest fireplain area. Alternatively, managers may seek to reduce the risk of very 
large fires by limiting the size of the largest potential fire spread area. Limiting the potential fire spread area is analogous 
to minimizing the size of the largest fireplain Ωi. Following previous problem formulations minimizing the largest size of 
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isolated components in networks [89,92,96,97], we introduced a non-negative variable S that tracked the largest size of 
fireplains Ωi in network G and solved the problem by minimizing S. In order to reduce the overall fire spread risk while 
minimizing the largest fireplain size S, we added a term to the objective equation that minimized the number of node pairs 
i,j with un-interdicted path connections from objective (1) (Table 2). Our problem 5 minimized the weighted sum of the 
largest fireplain size S and the number of node pairs in network G where fire spread was possible, i.e.,:

 
min

[
S+ f

i∈N∑ j∈Ωi∑
j̸=i

uijqij

]
,
 (11)

s.t.: constraints (6–10) and

 
S ≥

∑
j∈Ωi\{i}

uij + 1 ∀ i ∈ N.
 (12)

Symbol f defined a relative importance for the fire spread term. The second term in equation (11) helped break ties 
in optimal solutions. Constraint (12) calculated the value of decision variable S as the largest number of node pairs with 
non-interdicted fire spread paths from node i plus 1 (for the node i itself), which is the largest fireplain size.

2.4.5.  Problem 6: Fuel treatments guided by patch-based fire hazard measures. For comparison, our problem 6 
evaluated a firebreak allocation guided by a patch-based fire hazard measure, φi, i.e.,:

 min
i∈N∑

xiφi (13)

s.t.: constraint (2).
Problem 6 allocated firebreaks to minimize the sum of the fire hazard measure φi in the remaining untreated nodes. 

We evaluated three popular measures: burn probability, the probability of fuel presence within a 500-m distance and the 
fireplain size (Table 2).

Since our primary intent was to examine the utility of the CNDP and CERP for partitioning the landscape into compart-
ments on their own, we did not include the constraints enforcing the linear contiguity of the firebreaks. Potentially, other 
constraints could be added to allocate firebreaks as connected segments [48,50], however this would mask the capacity 
of problems 1–6 to delineate the compartments on their own and might lead to suboptimal fire hazard reduction.

To compare the node removal and edge removal solutions, we needed to define a relative budget ratio for removing an 
equivalent number of nodes versus number of edges. The principal aspect for determining this ratio was the number of 
nodes or edges to delineate an equivalent-length linear firebreak segment (Fig 3d). Through a series of tests, we set the 
budget ratio of removing a node versus removing an edge as 2.5:1.

2.5. Finding the firebreak allocation solutions in the study area

We found the firebreak allocation solutions for a range of budgets between 12 and 120 removed nodes in problems 1, 2 
and 6 and, equivalently, between 30 and 300 removed edges in problems 3–5. To determine the trade-offs between the 
goals of minimizing the number of possible fire spread path connections versus minimizing the fireplain size, we calcu-
lated the values of decision variables S and uij in all problem instances and plotted the solutions in dimensions of S and 

the total number of node pairs in network G where fire spread was possible, 
i∈N∑ j∈Ωi∑

j̸=i
uijqij .

We solved problems 1–6 with the GUROBI linear programming solver [98]. Problems 1 and 2 were smaller in size than 
problems 3 and 4 but had weaker root relaxations and took 3–5 times longer to solve. We solved problems 1 and 2 for 72 
hours or until reaching an optimality gap of 1%, whichever came first. Problems 3 and 4 were solved to optimality within 
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less than 18 hours. To reduce the solving time for the CNDP problems 1 and 2, we used the edge removal problem 3 and 
4 solutions to warm start the CNDP problems 1 and 2. First, we selected all nodes with one or more edges removed in 
problem 3 and 4 solutions as a mask and found the node removal solutions within that mask (assuming the equivalent 
node removal budgets were 2.5 times smaller than the edge removal budgets) (Fig 5). We then used these solutions to 
warm-start the full node removal problem. Problem 5 was warm-started from the problem 3 solution.

3. Results

3.1.  Mapping the fire spread patterns

The estimated fire spread patterns in the study area were strongly influenced by the prevailing winds blowing from the 
west-southwest (Fig 2). The lower-elevation northern and eastern portions of the study area were characterized by higher 
fire risk, whereas the southwestern portion of the region with higher elevations was characterized by lower fire risk (Fig 
4d). The area was characterized by an almost uniform distribution of fireplain sizes (Fig 4f), which indicated that large fires 
could occur in nearly any part of the study region. The predicted fire size distribution was dominated by small fires, with 
95% of fires spreading over distances of 12.9 km or less (Fig 6). The maps of the fire spread likelihoods pij between node 
pairs i,j followed the general patterns of burn probabilities (Fig 4c, 4d).

3.2. Comparing the firebreak allocation solutions

We compared the firebreak allocations and the fireplain sizes |Ωi| after the treatments in Fig 7. The firebreaks tended to 
be oriented along a northwest–southeast axis – roughly perpendicular to the directions of the prevailing winds (Fig 2a). 
Almost all removed nodes and edges in the problem 1–4 solutions were allocated in linear segments. In the CNDP prob-
lem 1 and 2 solutions, treatments were allocated to a few isolated nodes, but in the CERP problem 3 and 4 solutions all 
treatments were allocated as linear segments (Fig 7, Table 3). As the treatment budget level increased, problem 3 and 4 
solutions fragmented the region into a system of compartments that significantly reduced the largest and mean fireplain 
sizes (Table 3). Problem 3 solutions, which tended to reduce the spread of the largest fires, revealed even-spaced com-
partments of similar depth in directions perpendicular to the prevailing winds. Problem 4 solutions, which minimized the 

Fig 5. Using the edge removal problem 3 solution to warm start node removal problem 1.

https://doi.org/10.1371/journal.pone.0321722.g005

https://doi.org/10.1371/journal.pone.0321722.g005
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spread of the most frequent (small) fires, tended to place more firebreaks in areas with relatively higher burn probabilities 
(Figs 4d and 7).

The problem 5 solutions, which minimized the largest fireplain size, also generally followed a strategy of fragmenting 
the landscape into even-spaced compartments but allocated a portion of treatments to block some nodes with large fire-
plains (Fig 7, Table 3). Given that the threat of large fire occurrence is almost omnipresent across the study area (Fig 4f), 
the allocated linear firebreak segments in the problem 5 solutions still tended to be evenly spaced across the region. Com-
pared to the CERP edge removal solutions in problems 3–5, the CNDP node removal solutions in problems 1–2 allocated 
firebreaks in shorter segments and selected a few isolated nodes (Fig 7). Overall, the CERP problem 3 and 4 solutions 
achieved the most complete compartmentalization. The solutions to problem 6 that minimized the patch-based fire hazard 
measures could not effectively delineate compartments (Fig 7). While small portions of the removed nodes were allocated 

Fig 6. Distributions of the simulated fire sizes and the fire spread vector lengths between node pairs i, j in network G: a) simulated fire size 
distribution; b) distribution of fire spread distances between node pairs i, j, weighted by the estimated fire spread probabilities between i and 
j, pij.

https://doi.org/10.1371/journal.pone.0321722.g006

https://doi.org/10.1371/journal.pone.0321722.g006
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Fig 7. Optimal node and edge removal solutions with treatment budgets of 25, 50 and 80 removed nodes (or equivalently, 62, 125 and 250 
removed edges). The cost ratio between the removal of a node in the CNDP solutions and an edge in the CERP solutions is 2.5:1. The background 
maps show the fireplain size for each node after the treatments. The network node data can be found in S2 Appendix.

https://doi.org/10.1371/journal.pone.0321722.g007

https://doi.org/10.1371/journal.pone.0321722.g007
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in 3- or 4-node segments, most of the treatments were allocated as a mix of clusters and single isolated nodes (Table 3). 
This indicates that using patch-based fire hazard measures will always require additional constraints to enforce the linear 
contiguity of the allocated firebreaks.

As the treatment budget increased, the solutions to problems 1–4 created more compartments (Fig 7). However, the 
reduction of wildfire spread risk yielded diminishing returns (Fig 8): the largest marginal reduction of fire spread risk 
was achieved at smaller budget levels. Edge removal problems 3–4 and node removal problems 1–2 achieved the most 
effective reduction of the fire spread risk across all budget levels (Fig 8a). Problem 5 solutions demonstrated the most 
effective reduction of the fireplain size (Fig 8b, Table 3). Notably, all CNDP and CERP solutions were able to effec-
tively reduce both the average fireplain size (Fig 8c) and overall fire spread potential (Fig 8a). The trade-off between 
reducing the fireplain size or the fire spread potential across the landscape was small (Fig 9 callout I). This is because 

Table 3. Firebreak allocation summaries in problems 1-6 optimal solutions.

Treatment 
 budget, 
 equivalent 
edges/nodes

Problem Relative fire spread risk, vs.
no-treatment scenario

Fireplain size,
nodes:

Budget portion spent on:

Large fires: 
i∈N∑ j∈Ωi∑

j̸=i
uijqij/

i∈N∑ j∈Ωi∑
j̸=i

qij

Frequent fires:
i∈N∑ j∈Ωi∑

j̸=i
uijpij/

i∈N∑ j∈Ωi∑
j̸=i

pij

Max, S Mean Linear 
fire 
breaks

Non-linear 
clusters
>2 nodes

1-node/  
≤ 3-edge 
segments

– No treatments 1 1 83 35 – – –

Problem 1 (CNDP) 0.830 0.881 71 30 100% – –

Problem 2 (CNDP) 0.848 0.873 72 30 92% – 8%

Problem 3 (CERP) 0.846 0.910 73 29 95.2% – 4.8%

62 edges Problem 4 (CERP) 0.857 0.901 73 29 100% – –

[25 nodes] Problem 5 (CERP) 0.912 0.950 54 31 75.8% – 24.2%

Problem 6: Min(BP) 0.952 0.924 79 33 – 76% 16%

Problem 6: Min(FE) 0.959 0.944 81 33 12% 32% 28%

Problem 6: Min(FS) 0.948 0.938 63 32 40% – 60%

Problem 1 (CNDP) 0.711 0.759 68 26 92% – 8%

Problem 2 (CNDP) 0.710 0.759 61 26 96% – 4%

125 edges Problem 3 (CERP) 0.711 0.826 56 25 100% – –

[50 nodes] Problem 4 (CERP) 0.725 0.814 59 25 100% – –

Problem 5 (CERP) 0.747 0.852 46 26 94.4% – 5.6%

Problem 6: Min(BP) 0.917 0.872 79 32 – 86% 6%

Problem 6: Min(FE) 0.884 0.882 80 32 10% 50% 25%

Problem 6: Min(FS) 0.870 0.861 57 30 34% – 28%

Problem 1 (CNDP) 0.546 0.645 55 21 98.7% – 1.3%

Problem 2 (CNDP) 0.559 0.637 56 22 98.7% – 1.3%

200 edges Problem 3 (CERP) 0.581 0.730 51 20 100% – –

[80 nodes] Problem 4 (CERP) 0.598 0.721 52 21 100% – –

Problem 5 (CERP) 0.593 0.745 37 21 100% – –

Problem 6: Min(BP) 0.861 0.808 79 31 – 92.5% 5%

Problem 6: Min(FE) 0.869 0.839 79 31 18.8% 38.8% 28.8%

Problem 6: Min(FS) 0.813 0.798 53 28 20% 33.8% 23.8%

Problem 6 objective:

Min(BP) – minimize the sum of the burn probability values of the remaining untreated sites in landscape network G;

Min(FE) – minimize the sum of the fuel exposure values (the probabilities of fuel presence within a 500-m radius from site i) of the remaining untreated 
sites in landscape network G;

Min(BP) – minimize the sum of the fireplain sizes, | Ωi | of the remaining untreated sites in landscape network G.

https://doi.org/10.1371/journal.pone.0321722.t003

https://doi.org/10.1371/journal.pone.0321722.t003
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Fig 8. Objective value vs. the treatment budget. X-axis denotes the treatment budget level in the equivalent number of treated edges. The removed 
node budgets in the problem 1, 2 and 6 solutions were converted to the equivalent numbers of removed edges using a 2.5:1 cost ratio: a) spread poten-
tial of large fires; b) the largest fireplain size (characterizes the worst-case outcome of the spread of large fires); c) mean fireplain size (characterizes the 
average reduction of the potential fire spread area). Lower values on Y-axis indicate better outcomes.

https://doi.org/10.1371/journal.pone.0321722.g008

https://doi.org/10.1371/journal.pone.0321722.g008
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Fig 9. The trade-off between the capacity to reduce the spread potential of large fires vs. the reduction of the largest fireplain size. The 
treatment budget level: a) 25 nodes/ 62 edges; b) 50 nodes/ 125 edges; c) 80 nodes/ 200 edges. Callout I shows the trade-off between the problem 3 
solution that minimizes the spread potential of large fires and the problem 5 solution that minimizes the largest fireplain size.

https://doi.org/10.1371/journal.pone.0321722.g009

https://doi.org/10.1371/journal.pone.0321722.g009
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minimizing the number of node pairs with possible fire spread paths also reduced the number of long fire spread paths 
(which in turn reduced the sizes of the largest fireplains). By comparison, the problem 6 solutions that minimized the 
patch-based fire hazard metrics did not reduce the fire spread potential as effectively as the CERP or CNDP solutions, 
nor did the problem 6 solutions that minimized the precomputed fireplain size, despite some success with that specific 
objective (Fig 9).

3.3. Node removal vs. edge removal strategies

We compared the impacts of the CNDP and CERP-based firebreak allocation strategies using the node/edge removal 
cost ratio 2.5:1. Adopting this ratio, the reductions in fire spread risk and mean fireplain size among the problem 1–5 solu-
tions appeared comparable (Fig 8a, 8c). However, by using this ratio, we likely overestimated the efficacy of node removal 
solutions because, on average, the removal of one node in these solutions eliminated five edges connecting that node to 
adjacent nodes (i.e., a 5:1 ratio). Since our intention was to assess the cost of creating linear firebreaks to define the com-
partments, we felt that our choice of a 2.5:1 ratio was reasonable. Whereas removal of a node in the CNDP solutions also 
removes all edges connected to that node, some of the removed edges may not have served as effective fire spread con-
duits. In contrast, removal of individual edges in the CERP solutions can be more nuanced and target only those edges 
critical for fire spread, which leads to a more efficient utilization of the fuel treatment budget. Overall, the CERP model 
produced stronger formulations with faster solving times than the CNDP even though the CERP model, on average, was 
2.3 times larger in size than the CNDP.

4. Discussion

Recent catastrophic wildfires in Alberta, such as the fires in Slave Lake in 2011, Fort McMurray in 2016, and Jasper in 
2024, have highlighted the need to accelerate the planning and implementation of fire risk-mitigation strategies. While 
national programs like FireSmart in Canada have encouraged many communities to undertake fuels modification, these 
efforts remained limited, as is the current level of prescribed and traditional burning [99,100]. Given the already-high 
level of land use in the region – mainly through forestry, mining and agriculture – there are numerous opportunities to 
integrate risk-mitigation strategies into regional land management (cf. [101]), particularly in high-use areas with sub-
stantial human infrastructure, as illustrated in a study that simulated wildfire behavior in east-central Alberta [102]. While 
there has been de facto implementation of compartmentalization ideas in some landscape-management plans in western 
Canada, somewhat analogous, in concept, to Potential Wildfire Operational Delineations (PODs) in the USA [103], full 
practical implementation could be challenging because it would need to include multiple land uses, land tenures, and 
economic actors. However, if the integration of land-use activities in the study region is borne out, we expect a rapid 
uptake of new fuels- reduction strategies. The proposed CERP approach, thanks to its capacity to track both the key fire 
spread paths and the potential burn area (the fireplain size), can assist with the development of such fire mitigation proj-
ects. Furthermore, the methodology can utilize model-based projections of current and future fire regimes, which helps 
capture the complexities of fire behavior in heterogeneous landscapes as well as the multitude of factors contributing to 
fire ignitions and spread.

The compartmentalization approach in our CERP formulations has advanced our previous work that applied critical 
node detection for optimizing fuel treatments in the following ways. The CERP addressed the chief limitation of the CNDP: 
the need to keep the node size compatible with the practical scale of the proposed fuel treatments. Furthermore, both 
node and edge removal formulations were able to track the presence-absence of connecting fire spread paths between 
node pairs, which helped account for factors controlling directional spread of fires. The practical benefits of this aspect 
were illustrated by our study region, which was characterized by prevailing winds from the southwest and was segmented 
into compartments by firebreaks that ran perpendicular to these winds. The CNDP and CERP problems did not always 
delineate full compartments. As shown in a previous study [50], effective reduction of fire spread risk may involve removal 
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of isolated single nodes with high ignition risk. The compartments can be partial if they effectively intersect major fire 
spread paths and only need to cover the key locations where fires are likely to spread [104].

When presenting the CERP concept, we did not account for spatial variation of node (or edge) removal costs. This 
aspect would be important in remote landscapes with limited or no road infrastructure. Since our study area had rea-
sonable road access established by decades of resource extraction activities, this simplification felt reasonable. How-
ever, the estimation of site access costs could become more complex if the fuel treatments had to be combined with 
other activities, such as targeted commercial harvesting of forest stands. In this situation, one would need to estimate 
where the benefits from commercial harvest offset the cost of treating the designated firebreak sites. Notably, inte-
grating forest harvest planning into fuel treatment design not only reduces the potential loss of timber values, but also 
increases the feasibility of implementing and maintaining long-term wildfire mitigation strategies such as landscape 
compartmentalization.

Our results also pointed to important differences between the firebreak solutions based on patch-based fire hazard 
measures and those of the CERP. The key differences between the firebreak allocation strategies in the examined mod-
els stemmed from the nature of the performance metric in the objective function and the associated wildfire information 
used to guide the allocation decisions. The CNDP and CERP models incorporated fire information in the form of a two- 
dimensional matrix of fire spread likelihoods pij (or binary indicators qij) between all node pairs in the area, which enabled 
tracking of the impact of firebreaks on all directional fire spread vectors. As the treatment budget level increased, these 
models created a system of compartments that encapsulated almost all major hotspots with high burn likelihoods (Fig 7). 
By comparison, fire hazard information at the level of a single-dimensional patch metric in problem 6 was insufficient to 
characterize the potential fire spread directions and likely spread distances in the model. To work effectively, problem 6 
would require additional constraints to enforce linearity of the firebreaks, like the contiguity constraints in [48] and [50], but 
this would not guarantee effective interdiction of the key fire spread paths.

The CERP problem solutions elucidated the importance of the uncertainty assumptions in estimating the fireplain con-
figurations. In our study, we delineated the fireplains Ωi around nodes i as unions of the footprints of the fires ignited in i 
(as predicted by the fire growth model). This was a depiction of the worst-case fire spread outcomes because the fireplain 
accounted for the maximum possible fire spread area from node i and the fireplain size was shaped by the occurrence 
of large fires. Since large fires are rare, this strategy may be less effective when the fire behavior is dominated by small 
fires. Adding the fire spread probability parameter pij to the objective equation in problem 4 helped address this issue. We 
acknowledge that other prioritization schemes can be applied to adjust the priority of decision variables uij; for example, 
the fire spread distance ij or the fire intensity along the fire spread path.

One potential hurdle in the practical adoption of the methodology is the need to assemble complex fire weather and fuel 
composition datasets for undertaking fire behavior simulations with the fire growth model. Also, the combinatorial com-
plexity of both CNDP and CERP may limit their applications to moderate-size fuel networks. Applying them to the data of 
large landscapes may require restricting the scope of model decision variables, either by adding constraints that narrow 
the range of suitable site access conditions or imposing stricter site selection criteria for the firebreak sites. Another poten-
tial workaround to reduce the problem size is to coarsen the spatial resolution of the fuel network selectively in the areas 
where the establishment of firebreaks is unlikely or in remote locations outside the main fire spread corridors.

Potential extensions of the CERP formulation could include applications to find the configuration of firebreaks to protect 
critical human infrastructure in wildland-urban interface areas [105–107]. For example, the formulation can be modified 
following the approach in [39] for the protection of industrial infrastructure from wildfires. Alternatively, the CERP can be 
incorporated into a blended approach that combines the interdiction of critical fire spread corridors with targeted treat-
ments of potential fire ignition hotspots and locations with high-value infrastructure assets.

Our model did not track the effectiveness of firebreak segments. Firebreak effectiveness is correlated with local burn 
intensity; however, the overall capacity to stop fire spread may be compromised by long-range ember transport (i.e., fire 
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spotting), which would require increasing the level of fuel treatment across all allocated segments to make the firebreaks 
effective. The 2.15-km cross-sectional width of fuel treatments in this study should prevent most possibilities of spotting in 
the area’s forest types [87,88] and limit fire spread under a wide range of weather conditions. Nevertheless, these treat-
ments should never be considered infallible. Extreme weather may, on occasion, overcome limitations imposed by fuels 
and enable fires to spread through vegetation considered to have low flammability [108,109], albeit at a comparatively 
lower intensity [110]. Notably, fuel treatments are rarely designed to function independently of fire management activities. 
They are usually undertaken in conjunction with tactical operations, such as strip burning or back burning, where they 
provide anchor points for suppression teams, and are augmented by further fuel removal, thereby increasing their effec-
tiveness [59,111].

Our model could be modified to track firebreak effectiveness as follows: for each simulated fire footprint with the 
fire growth model, fire intensity values would be recorded at each location within that footprint and compose a fire 
propagation graph that depicts the possible fire spread (including the fire intensities) from the ignition location towards 
the fire perimeter (e.g., using the approach presented in [112]). Then, the optimization model would need to track the 
impacts of firebreak allocation through all simulated fire propagation graphs. For each fire propagation graph, fire-
break failures could be assessed by comparing the fire intensities in the firebreak locations against the fire intensity 
threshold that a given firebreak width (or level of fuel treatment) is estimated to contain. Such a model would consider 
the trade-off between the selection of the firebreak width (or level of treatment) with the corresponding acceptable 
failure level and the overall length of the firebreak system in the landscape. In this context, the firebreak allocation 
problem could be formulated analogously to a financial portfolio problem that evaluates the trade-off between the 
likelihoods of firebreak failures (analogous to asset volatility) and the mean fire hazard reduction (analogous to the 
portfolio return).
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