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Abstract. Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests

around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement
fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel
management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and

timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk,
and operational feasibility. The model employs the Minimum Travel Time algorithm in FlamMap and the Fire and Fuels
Extension to the Forest Vegetation Simulator to assess spatial and temporal effects with and without fuel treatments. The

objective function is set tominimise total expected loss from a landscape due towildfires throughout the planning horizon.
The model was applied to a 14 000-ha study landscape located on the west side of the Bitterroot Valley in Montana.
Comparisons between the optimised and random solutions show that the model was able to strategically locate and
schedule fuel treatments to efficiently reduce expected loss from the landscape.
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Introduction

There is a recognised need to apply andmaintain fuel treatments
to reduce catastrophic wildland fires in forests (Pollet and Omi

2002; Agee and Skinner 2005; Prichard et al. 2010). However,
treating all of the forest lands considered at risk would be costly
and impractical. Forest managers, who are faced with limited

budgets, narrowburningwindows, air quality issues and concerns
about treatment effects on other critical forest resources, must
establish priorities for where, when and how to implement fuel

treatments. Science-based as well as field-applicable guidelines
are necessary to strategically locate, schedule and apply fuel
treatments to effectively reduce catastrophic fire and restore
ecosystem health on landscapes over time (Collins et al. 2010).

Several models and decision tools have been developed for
addressing various aspects of fuel treatments while accounting
for other important resource-management issues and con-

straints. These models operate on a variety of geographic scales,
varying from an individual stand to an entire landscape com-
posed of many stands. Some models operate only on current

conditions, whereas others span multiple decades. For example,
most of the existing fire behaviour models, such as NEXUS

(Scott 1999), FIREHARM (Keane et al. 2010), FARSITE
(Finney 2004a) and FlamMap (Finney 2006), are able to
compute fire behaviour and spread at a stand level or across

stands at a landscape level. However, there is no temporal
component to these analyses that reflects how the effectiveness
of treatments changes over time with vegetative growth. In

contrast, the Fire and Fuels Extension (FFE) to the Forest
Vegetation Simulator (FVS; Reinhardt and Crookston 2003)
evaluates the effectiveness of proposed fuel treatments in the

context of potential fire effects on short- and long-term stand
dynamics, but does not simulate fire spread between stands or
have the ability to strategically locate fuel treatments.

Recent modelling efforts have addressed placement of fuel

treatments across a landscape. Some studies evaluated the
effects of spatial treatment patterns on changes in fire behaviour
and spread at a landscape scale (Palma et al. 2007; Schmidt et al.

2008; Kim et al. 2009), whereas other studies attempted to
optimise placement of fuel treatments in a multi-objective
decision-making framework (Nalle et al. 2004; Kennedy et al.

2008; Konoshima et al. 2010). However, most optimisation
methods developed for treatment placement in the past have
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ignored temporal aspects or employed simple fire-spread logic
with a hypothetical setting of treatment units in order to simplify
the problem.

Finney (2004b) developed an optimisation method that can
strategically place fuel treatments across a landscape to effi-
ciently disrupt the growth or movement of large fires. The

method was then employed in a simulation system developed
by Finney et al. (2007) to place fuel treatments over multiple
time periods to minimise undesired fire behaviour. Using a

sequential process of spatial optimisation and temporal simu-
lation of fuel treatments, the system selects treatment locations
for one planning period at a time, and then projects the post-
treatment landscape to the next planning period for treatment

decisions for that period. Although the system is able to
produce fuel treatment schedules over multiple time periods,
it places treatments in a given period without taking into

account their continuing effects in subsequent periods. Owing
to this sequence of simulations, treatment decisions made in
early periods easily dominate decisions to be made in later

periods. This one-way influence can narrow down the solution
space of the scheduling problem, and thus may result in inferior
solutions. In addition, the simulation system did not consider

several practical factors that might be critical in treatment
design and ground implementation, such as pre-existing
treatment unit boundaries, ownerships, land classes and rela-
tive values.

Despite the aforementioned modelling efforts to address the
strategic placement of fuel treatments, there still exists a
considerable gap between modelling fuel treatments and actu-

ally implementing such treatments on the ground (Collins et al.
2010). In the present study, we developed an optimisationmodel
for long-term fuel-management decisions at a landscape scale

with a hope of reducing the gap between modelling and ground
implementation of treatments. The model optimises locations
and timing of fuel treatments, while considering changes in
forest dynamics over time, fire behaviour and spread across a

landscape, values at risk, treatment proportions and practical
treatment unit boundaries. Similar to the simulation system
developed by Finney et al. (2007), our model employs the

Minimum Travel Time algorithm in FlamMap (FlamMap-
MTT) and FFE-FVS to assess spatial and temporal effects with
and without treatments. However, using an iterative search

algorithm, our model simultaneously optimises treatment loca-
tions over multiple time periods while considering continuing
and cooperative effects of treatments across time and space.

Treatment decisions in one period can thus mutually influence
decisions in other periods. Themodel sets the objective function
to minimise total expected loss from a given landscape due to
wildfires throughout the planning horizon, and considers user-

defined treatment units as binary decision variables that are
selected for treatment as either an individual polygon or a group
of treatment units. Simulated annealing (SA), a metaheuristic

search algorithm, is employed in the model to solve this
challenging combinatorial optimisation problem of placement
and scheduling of fuel treatments.

This paper presents the concept and structure of the optimi-
sation model and provides an application example for proof of
concept. The model has been incorporated into a spatial deci-
sion-support system, known as OptFuels, for other applications

(Jones and Chung 2011). The system can be downloaded from
the US Forest Service (USFS) Rocky Mountain Research
Station website (http://www.fs.fed.us/rm/human-dimensions/

optfuels/main.php, accessed 20 May 2013).

Methods

Structure of optimisation model

The optimisation model developed in this study consists of three
main functional components: vegetation simulator for treatment
effects and stand dynamics, fire simulator for fire behaviour and
spread, and heuristic solver for spatiotemporal optimisation of

fuel treatments (Fig. 1).
The main spatial data required for the optimisation model

include treatment units or stand polygons in a vector form with

associated attributes of current vegetation and fuel conditions,
and terrain information in a raster form with attributes of
elevation, slope and aspect. The model employs FFE-FVS to

project stands into the future with and without fuel treatments
and compute the fuel parameters needed for fire behaviour
modelling. The heuristic solver, equipped with a SA iterative
search algorithm, generates and evaluates a large number of

alternative fuel treatment arrangements over time and space
(i.e. alternative solutions). At each iteration, the solver develops
one alternative solution, virtually composes a landscape per

time period by filling it with FFE-FVS results of treatment units,
and rasterises the landscapes to build FlamMap-ready landscape
files for each time period. These landscape files reflect the

effects of selected treatments and dynamic changes of vegeta-
tion and fuels over time. FlamMap is then used to evaluate the
alternative solution in terms of treatment effects on changing

fire behaviour and spread across the landscape, and thus on
reduction of the total expected loss from the landscape due to
potential wildland fires over time. To model a future fire,
FlamMap analyses a user-defined fire scenario that specifies

wind direction and speed, fuel moisture conditions, ignition
locations and other necessary fire parameters.

The heuristic solver uses the FlamMap results to guide the

solution search in finding a near-optimal fuel treatment solution
that minimises the expected loss across a landscape from a
modelled future fire. A user-specified maximum allowable

treatment area is considered as an area constraint in the optimisa-
tion model. The solver outputs include the schedule and place-
ment of fuel treatments selected by the solver, the associated

expected loss value, total treatment areas computed for the area
constraint and FlamMap-ready landscape files for both untreated
and treated landscapes for each planning period. Details on each
functional component of the model are described below.

Simulation of treatment effects and forest
dynamics using FFE-FVS

FFE-FVS has been widely used by federal, state and tribal

government agencies to evaluate the effectiveness of proposed
fuel treatments in the context of potential fire effects on short-
and long-term stand dynamics (Crookston and Dixon 2005;

Johnson et al. 2011). FFE-FVS provides the capacity of FVS to
project vegetation changes due to growth,mortality, disturbance
and treatment, while incorporating additional data and models
to predict fuel parameters for the projected stands. FFE-FVS

Optimising fuel treatments over time and space Int. J. Wildland Fire 1119

http://www.fs.fed.us/rm/human-dimensions/optfuels/main.php
http://www.fs.fed.us/rm/human-dimensions/optfuels/main.php


requires a tree-list assigned to each stand, which can be obtained
from existing stand inventory data or imputation of tree-lists
from the representative Forest Inventory and Analysis (FIA)

plots as suggested by Crookston et al. (2002).
A treatment schedule option comprises a sequence of treat-

ment activities that may extend over multiple planning periods

to represent scheduled retreatments of the same location or
a one-time treatment occurring in a single planning period.
Treatment schedule options are assigned to the stand polygons

based on the vegetation and fuel conditions present in the
polygon, as well as the management zone where it resides. For
example, a mechanical treatment can be limited to a zone where

road access exists or to specific stand conditions. In the same
manner, individual treatments can be excluded as options in
riparian areas or other restrictive land-management zones. No
action throughout the planning horizon is always considered as

an eligible option for all stand polygons to be analysed.
After treatment schedule options are assigned to each stand

or group of similar stands, each option is simulated with FFE-

FVS for the sequence of treatments specified in the schedule.
These simulations define the fuel conditions required in fire
behaviour modelling for the future planning periods. To

improve the efficiency of FFE-FVS simulation, multiple treat-
ment units with similar vegetative characteristics may be strati-
fied and FFE-FVS simulation is run for each stratum. The results
are then stored in a relational database for data sharing among

multiple treatment units within the stratum.

Simulation of fire behaviour and spread
across a landscape using FlamMap

FlamMap is a fire behaviour mapping and analysis program that
computes potential fire behaviour characteristics in terms of

spread rate, flame length and fire-line intensity over an entire
landscape (Finney 2006). In addition, the MTT option (Finney
2002) employed in FlamMap calculates a fire arrival time for

each grid cell on a landscape. This arrival time represents the
minimum time span required for fire to move from an ignition
location across a landscape to a grid cell under a given fire

scenario. An absence of fire suppression is assumed in this travel
time calculation.

Our optimisation model evaluates the effects of various

placements and schedules of fuel treatments in terms of the fire
intensity and spread calculated by FlamMap-MTT for each
planning period. Specifically, the effects of treatments are mea-
sured using two FlamMap-MTT outputs: (1) node flame length

(which is computed from fire-line intensity to capture flame
length associated with the direction of fire movement,
e.g. backing, flanking or head fire) and (2) fire travel time.

We use node flame length as a surrogate measure of fire severity
within individual treatment units or stands, while using fire
travel time to estimate the likelihood of fire arriving at each grid

cell across a landscape. These two measures are used for
calculation of the total expected loss from amodelled fire across
a given landscape, which is the heuristic solver’s objective

function.

Future conditionsCurrent conditions

GIS vetor data

• Treatment polygons

• Vegetation (tree list)

• Surface fuel model

• Values-at-risk
   categories

GIS raster data

• Terrain information

Treatment options

• No action

• Prescribed burn

• Thin � prescribed
   burn

Time options for
implementation
• Time period 1, 2, etc.

Treatment schedule options

FVS-FFE simulation

Database containing
future conditions as
the consequences of
each treatment
schedule option
• Vegetation and
   surface fuels in each
   time period

• Minimising the total
   expected loss from a
   modelled wildfire

• Meeting given area
    constraints

Simulated annealing
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modelling

• Flame length
• Fire arrival time

Fire behaviour and spread
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Future

conditions
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Fire simulation
results

Selection of
treatment units
and schedule
option

Heuristic optimisation

Fig. 1. Overview of the optimisation model, OptFuels, consisting of three simulation and optimisation

components: vegetation and fuel treatment simulation using FVS-FFE, fire behaviour and spread simulation with

FlamMap, and a heuristic solver to schedule fuel treatments to minimise the total expected loss over the planning

horizon.
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Optimisation of fuel treatments using simulated annealing

The heuristic solver developed in this study is designed to
determine the most effective spatial and temporal distribution of
fuel treatments that minimises the total expected loss across a

landscape. It also considers user-defined treatment area limits
for each time period in each management zone as problem
constraints. Expected loss value for a grid cell on a landscape is

calculated as a product of user-defined value at risk of the grid
cell, percentage loss varying with fire intensity and a probability
that fire duration is long enough for a modelled fire to reach the

grid cell. The total expected loss from a given entire landscape is
then summed across the grid cells representing the landscape.

Expected loss of a grid cell from a modelled fire is measured
in terms of loss value relative to no fire occurring (Calkin et al.

2010). The user provides relative value-at-risk categories, and
the amount of loss expected from fire within each category
varies with the level of fire intensity (i.e. flame length; Table 1).

The user also provides fire duration probabilities indicating the
probability a modelled fire would last over a specific time span
(Table 2). Fire duration probabilities may be developed by

analysing the duration of past fires, or through using historical
weather data to estimate the probability of weather patterns over
various numbers of days that would allow fire suppression

efforts to contain a fire. We recognise that MTT in FlamMap
calculates fire spread assuming constant fire scenario conditions
(Finney 2002). However, fire-spreading weather is not continu-
ous in reality, but rather occurs only in blocks of time. Days of

fire duration are thus converted to minutes of active fire spread
for fire behaviour modelling by estimating the average number
of active spread hours in a 24-h day.

Using the results of the FlamMap-MTT simulation
(i.e. estimated node flame length and fire arrival time in each
grid cell), the solver selects a percentage loss and a fire duration

probability for each grid cell and calculates its loss value. The
sum of losses across grid cells on a given landscape becomes
the total expected loss of the landscape due to the modelled fire

(Eqn 1). Therefore, a high loss value occurs in an area that has a
high value at risk and is expected to burn with high intensity or
when the modelled fire quickly moves across the landscape to
that area.

The heuristic solver employs a SA solution search algorithm.
The solver develops several alternative fuel treatment solutions
and selects the most effective fuel treatment placement and

schedule that minimises the total expected loss across the
landscape while meeting given area constraints. Through
dynamic link libraries (DLLs), the solver automatically runs

FlamMap-MTT in real time on landscape files developed for
each time period for solution evaluation. The solution is also

evaluated for its feasibility against any given area constraints. If
the solution violates any of the constraints, it is penalised by an
additional loss calculated as the total amount of deviation from

the violated constraints multiplied by an arbitrary large factor
(Eqn 1). This penalty prevents infeasible solutions from being
selected as the best solution.

Minimise
X

t2T

X

c2C
Pc;t �Wr � Lossc;r; f ;t þ PF � Dev ð1Þ

where c is an index of grid cells, t is a time period, r is an index of
risk category, f is an index of flame length category, Pc,t is the

probability of grid cell c being burned from a fire modelled in
time period t. The probability depends on fire arrival time at the
cell and user-defined fire duration probability (see Table 2),Wr

is the weight factor for risk category r, Lossc,r,f,t is the loss value
at risk category r of grid cell c given predicted flame length
category f in time period t, PF is the user-defined penalty factor,
and Dev is the total amount of deviation from the violated

constraints.
SA is a metaheuristic search technique that has been widely

used to solve large combinatorial optimisation problems in

various fields (Kirkpatrick et al. 1983). The ideas that form
the basis for SA were first published by Metropolis et al. (1953)
in an algorithm to simulate the cooling of materials in a heat

bath – a process known as annealing. The approach is a varia-
tion of theMonte Carlo method that uses a local search in which
a subset of solutions is explored by moving from one solution

Table 1. An example of relative value at risk varying with flame-length categories

The relative loss value of a grid cell is calculated as its loss index multiplied by its weight

Value-at-risk category Area (ha) Weights Loss index per flame length category based on a 90� 90-m grid cell

Low (0–0.3m) Medium (0.3–1.0m) High (1.0–2.0m) Very high (2.0–4.0m) Extreme (4.0mþ)

Residential 1711 8 5 10 30 50 80

Wildland–urban interface 3343 8 2.5 5 15 25 40

Other forested land 8948 1 0 10 20 30 30

Table 2. An example of fire duration probabilities

Aprobability of 0.9 at 300min of active spread time indicates that

there is a 90% chance that the modelled fire lasts for 300 active

fire-spread minutes

Active spread time categories (min) Fire duration probability

300 0.9

600 0.8

900 0.7

1200 0.6

1500 0.5

1800 0.4

2100 0.3

2400 0.2

2700 0.1

3000 0.0

3300 0.0

3600 0.0
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to a neighbouring solution. To avoid becoming trapped in a
local optimum, the procedure provides for an occasional accep-
tance of an inferior solution to allow it to move away from a

local optimum. Temperature and cooling rate are algorithm
parameters that control the number of iterations and range of
acceptable solution values. The chance of accepting inferior

solutions becomes large at a high temperature, which allows
search across a broad solution space. The chance gets smaller as
temperature decreases, which reduces solution variability and

thus allows a narrow and intensive search for a better solution.
The SA algorithm employed in the heuristic solver is illustrated
in Fig. 2. Readers are encouraged to refer to Kirkpatrick et al.

(1983) for details on the theory of the algorithm.

Clustering adjacent stand polygons for a large treatment area

Spatial representation of a landscape using forest stand bound-
aries often results inmany small stand polygons (e.g.,5 ha), but
treating small treatment units sporadically across a landscape

might not be cost-effective or effective at changing fire behav-
iour on a landscape (Ritchie et al. 2007). In the current study, we
developed a polygon-clustering algorithm and incorporated the

algorithm into the heuristic solver to group adjacent polygons
with treatments in the same period into larger, contiguous
treatment areas (Fig. 3).

With the polygon clustering algorithm, the heuristic solver
takes a two-phase approach to generate and modify alternative
solutions. In Phase I, the solver begins with developing a

Develop an initial solution and store it as the
current solution

Run FlamMap-MTT (Minimum Travel Time) and
evaluate objective function value; set initial SA
parameters (initial and ending temperatures,

number of iterations at each temperature level)

Update the current solution

Randomly choose a set of polygons from the
current solution and change their currently

assigned treatment schedules to create a new
solution

Calculate a SA
acceptance value (p):
p � exp(–difference in
solutions/temperature)

Accept
solution?

Lower temperature?

Reduce the current temperature

Current temperature � ending
temperature?

Stop and report the best solution found
during the search

Yes

Yes

Yes

No

No

No

No

Yes

Run FlamMap-MTT and evaluate objective
function value

Is this new solution better
than the current solution?

Penalise the new solution if it violates any
given constraints

Discard the
new solution

Fig. 2. A simulated annealing (SA) algorithm employed in the heuristic solver to optimise fuel treatment

locations and schedule.
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‘no-action’ scenario as an initial solution where no treatment is
scheduled across the landscape throughout the planning horizon.

This solution provides the worst-case scenario with the maxi-
mum possible amount of expected loss from the landscape. The
solver then builds polygon clusters and adds the clusters into the

solution for treatments. This process is repeated until the total
number of hectares selected for treatment reaches the maximum
allowable area constraint per planning period. Once the area
constraints are reached closely, Phase II begins where the solver

implements the SA algorithm to improve the solution by
iteratively generating and examining neighbouring solutions.
To generate a neighbouring solution, a single polygon cluster is

randomly selected and the fuel treatment schedule assigned to
the cluster is removed. Then, a new cluster is formed in
a different location and assigned one of the available treatment

options. This solution refinement process continues until the
SA algorithm ends.

Application

Study landscape

We applied the optimisation model to a 14 000-ha study
landscape located on the west side of the Bitterroot Valley in

Montana (Fig. 4a). Private property and state lands border the
project area to the east and the Selway–Bitterroot Wilderness
bounds the project area to the west. Approximately 70% of the

study landscape is a part of the USFS Bitterroot National Forest,

whereas the rest of the landscape is private land with residential
development.

The vegetation structure in the majority of the project area
has grown into overstocked, dense stands that are at increased
risk of stand-replacing crown fires or intensities that cannot be

directly attacked by firefighters. The increased inter-tree com-
petition in these dense stands can make the larger, overstorey
trees more susceptible to insects and disease and increase
mortality of the subdominant trees (Hummel and Agee 2003).

Eighty-two per cent of the project area is in fire regime condition
class 3 (highly departed from historical fire frequency and
severity) and 18% is in fire regime condition class 2 (moderately

departed from historical fire frequency and severity). These fire
regime condition classes have the greatest deviation from
natural fire regimes and are most in need of treatment (Hardy

et al. 2001; Schmidt et al. 2002). Existing fuel loads (including
live trees) pose a threat to the public, firefighters and natural
resources. Any large fire (.40 ha) or multiple ignitions in one
day on the Bitterroot Face have the potential to overwhelm

suppression forces and travel unimpeded to the Forest Service–
private boundary and onto private property.

Forest stand delineations on the study landscape were

obtained from R1-VMP, a Geographic Information System-
based forest vegetation classification system, produced by the
Northern Region of the USDA Forest Service (Brewer et al.

2004). R1-VMP categorises polygons based on dominant and

Randomly select a seed polygon

Is the current cluster size � user-defined
minimum treatment size?

Complete this polygon cluster

Indentify adjacent polygons to the seed
polygon

Randomly select one adjacent polygon that
has not previously been selected

Any other adjacent
polygons exist?

Include the adjacent polygon in the cluster
and replace the seed polygon with the

adjacent polygon

Yes

Yes

Yes

No

No

No

Discard the
current cluster

Does it have the same treatment schedule
as the seed polygon?

Fig. 3. A polygon-clustering algorithm developed to combine adjacent stand polygons into a larger

contiguous treatment unit.
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co-dominant tree species, stand size class and stand density as
measured by percentage canopy cover. R1-VMP, however, does

not provide inventory data for the forest vegetation classes.
Inventory data were assigned to the R1-VMP polygons using the

k-nearest neighbour imputation method (Crookston and Finley
2008). In this process, FIA plotswere imputed to polygons based
on the similarity of zonal statistics computed for the stand

polygons and FIA plot locations from Landsat spectral imagery
(http://landsat.gsfc.nasa.gov/, accessed 20May 2013). The plots
used in this process included FIA plots from four counties in

WesternMontanawith forest conditions similar to the study area
and intensified grid plots collected by the Bitterroot National
Forest staff with sample techniques similar to FIA. Only the 188

plots measured in the early 2000s were used to correspond with
the 2002 Landsat imagery.

The Northern Idaho–Inland Empire variant of the FVS
(www.fs.fed.us/fmsc/fvs, accessed 20 May 2013) was used to

simulate applying prescribed burn only, and thin and prescribed
burn treatments to the plots. Using Suppose (http://www.fs.fed.
us/fmsc/fvs/software/suppose.php), separate FVS runs were

made for applying each treatment to each plot that met the
treatment criteria in each planning period. FVS runs were also
made for ‘no action’ (no treatment applied) to project the

untreated plot data through future planning periods. FFE-FVS
was used in these simulations to predict the following fuel
parameters for fire behaviour modelling: crown base height,

stand height, crown bulk density and percentage crown closure.
FFE-FVS also assigns surface fuel models to projected forest

stands, but we found that these fuel model assignments did not
result in modelled fire behaviour that matched observed fire

behaviour of past fires in westernMontana. Others have encoun-
tered similar problems with the FFE-FVS fuel model assign-
ments in other studies (Seli et al. 2008; Collins et al. 2011). We

chose instead to use the LANDFIRE fuel model assignments
(http://www.landfire.gov/datatool.php) for existing conditions,
which we assumed continued through the 20-year planning

horizon for the no-action alternative. For post-treatment fuel
parameters, we used the ‘Low-loadCompact Conifer Litter’ fuel
model (Scott and Burgan 2005) following treatment to reflect
the fuel treatment objectives.

The fuel treatment scheduling approach presented here was
designed for use by federal, state and tribal agencies. Thus, we
restricted the fuel treatment options in the study area to non-

reserved public lands managed by the USFS and the State of
Montana. There exist a total of 4894 stand polygons representing
the entire study landscape, with an average size of 3 ha (Table 3).

Treatment options and model parameters

For the study landscape, we identified the following two fuel
treatment options that are known to be effective at mitigating
fire severity in dry western forests (Prichard et al. 2010):
prescribed burn only and thin and prescribed burn. Depending

on the current stand density of individual forest stands, one of
the two options was assigned to each stand as a treatment option.
A total of 3274 ha (or 840 stand polygons) were identified as the

area where a prescribed burn could not be accomplished without
thinning to reduce ladder fuels. The prescribed-burn only option
was assigned to the rest of treatable stands (6252 ha) where the

stand density was low or shrub dominated (Table 3). The
thinning prescription was designed to reduce stand density to
,17m2 of basal area per hectare. Two time periods were
considered with a 10-year time span in each time period. It

Montana

Study area

WUI

Residential

Other forest land

Public management
Private ownershipPrivate ownershipPrivate ownership
Study area extentStudy area extentStudy area extentKilometresKilometresKilometres

0 1 2 3 4 5 6

Legend
Ignition line

Residential

Other forested land

WUI

(a)

(b)

N

Fig. 4. A study landscape located in western Montana shown with land

classes (a) and a rasterised landscape with the value-at-risk category

attributes and the ignition line location (b) (WUI, wildland–urban interface).
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was assumed that the same area could be treated only once over
the 20-year planning horizon.

All the stand polygons in the study landscape were classified

into the following three value-at-risk categories: (1) parcel that
contains residential structures; (2) wildland–urban interface
(WUI) defined as polygons within one-half mile (,805m) of

residential structures; and (3) forest lands not included in
any other risk category (Table 1 and Fig. 4b). Loss response
functions from Calkin et al. (2010) provided the basis for

assigning percentage loss by flame-length categories. Residen-
tial and WUI parcels received an importance weight of 8 per
90� 90-m grid cell, whereas non-WUI forest land received a
weight of 1 per grid cell (Table 1).

The modelled fire scenario includes a line of ignition on the
west boundary of the study landscape with winds blowing from
the west at 20miles h�1 (,8.94m s�1) (Fig. 4b). Fuel moistures

by fuel category were 4% for 1-h, 5% for 10-h, 7% for 100-h,
50% for live herbaceous and 90% for live woody fuels, with
foliar moisture set at 100%. Active spread time categories and

fire duration probabilities were developed for the study land-
scape based on the frequency of past weather patterns that would
be expected to allow fire suppression efforts to be successful in

containing a wildland fire (Table 2). FireFamily Plus (Bradshaw
andMcCormick 2000)was used to analyse the frequency of one-
half inch (,12.7mm) or more of precipitation occurring over
3-consecutive-day periods, starting on 15 July and continuing

through September. The time frame for these probabilities was
converted to themeasure of time used in FlamMap-MTT (active
spread minutes) based on the percentage of time when winds

approximating thewind speed used for our fire spreadmodelling
(20miles h�1, ,8.94m s�1) were present at weather stations in
the study area vicinity.

The SA algorithm requires user-defined algorithm para-
meters, such as initial temperature (Tinit), ending temperature
(Tend), cooling rate and number of iterations at each temperature
level. For this application, an initial temperature was set at

60% of the objective function value of the initial solution
(i.e. no-action scenario) and an ending temperature was set at
0.05% of the initial temperature (Table 4).

Model implementation and runs

For the optimisation model, graphic user interfaces were
developed to facilitate data input and data transfer among the

model components (Fig. 1). Coded in Microsoft Visual Cþþ,
the heuristic solver was designed for multiple-processor
computers to simultaneously run FlamMap DLLs on multiple

landscape files. A desktop computer with a 2.83-GHz,
8-processor CPU and 8GB of RAMwas used to run the heuristic
solver in this application.

Four different area proportions were considered in this
application as area constraints to analyse the effectiveness of
varying amounts of treatment on changing fire behaviour and

reducing expected loss across the study area. The treatment
intensity scenarios considered are: 0 (no action), 20, 40 and 60%
of the total treatable areas (Table 5).

To measure the relative effectiveness of the optimised solu-

tions, a total of 30 random solutions were developed under each
treatment intensity scenario. In each random solution, clusters of

Table 3. Fuel treatment and timing options assigned to stand polygons in the study landscape

WUI, wildland–urban interface

Ownership Stand type Number of polygons Area (ha) Available fuel treatment options

Forest Service Tree-dominated Non-WUI 743 2869 � no action

� thin and prescribed burn in period 1

� thin and prescribed burn in period 2

WUI 97 405

Low-density tree- or

shrub-dominated

Non-WUI 1928 5727 � no action

� prescribed burn only in period 1

� prescribed burn only in period 2

WUI 169 525

Private land WUI 1821 4124 � no action

Others 136 352 � no action

Total 4894 14 002

Table 4. Simulated annealing algorithm

parameters

Tinit, initial temperature; Tend, ending temperature

Algorithm parameter Value

Tinit 1 007 627

Tend 504

Cooling rate 0.95

Number of iterations at

each temperature level

20

Minimum size of treatment

unit (cluster size)

20 ha

Table 5. Four treatment intensities modelled in this study

Treatment intensity is defined as the proportion of treated areas relative to

the total treatable areas in the study landscape

Period Treatment intensity

0%

(0% per

period)

20%

(10% per

period)

40%

(20% per

period)

60%

(30% per

period)

1 0 ha 930 ha 1860 ha 2790 ha

2 0 ha 930 ha 1860 ha 2790 ha
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treatment units were randomly constructed and distributed
across the treatable areas of the landscape until the maximum
allowable areas set for each time period were closely met.

Treatment effects of each random solution were then simulated
by FlamMap-MTT and their total expected losses were calcu-
lated for comparison.

Results and discussion

Optimised fuel treatment location and timing

Locations and timing of fuel treatment were optimised under

each treatment intensity scenario tominimise total expected loss
from the study landscape due to the modelled wildfire (Fig. 5).
The total number of hectares selected for treatment ranged from

1859 to 5581 across the treatment intensity scenarios (Table 6).
These treatment areas were evenly distributed between the two
time periods and close to the upper limit of the area constraints

established for each scenario (Table 5). The results show that the
total amount of expected loss decreased as more areas were
treated (Table 6). The reduction in loss, however, decreased for
each 20% increment in treatment areas, indicating a diminishing

marginal return for additional areas treated beyond 20% of the

landscape. When time periods were compared, there was a
substantially larger decrease in expected loss in period 2 than
period 1, albeit the total treatment areas being more or less the

same in both time periods (Fig. 6). It appears that some effects of
treatments scheduled in period 1 continued through the subse-
quent period, andwere cooperatively coupled with treatments in

period 2, resulting in greater effects of treatments in period 2.
There seems to be no apparent spatial pattern of treatment

units across the landscape in the solutions. However, there exist

several concentrated areas of treatment, especially in the upper
and mid-west areas of the landscape in the solutions for the 20
and 40% treatment scenarios (Fig. 5). Results of an independent
FlamMap-MTT run on the untreated landscape reveal that the

upper and mid-west areas of the landscape serve as the roots of
major fire paths that move across private residential and WUI
areas located in the eastern portion of the landscape (Fig. 7).

Although the heuristic solver was not designed to place fuel
treatments to directly disrupt major fire paths, it appears that the
solver was able to find treatment locations in treatable forested

lands that effectively change fire behaviour and paths that could
otherwise negatively affect high-value yet non-treatable areas,
such as residential areas and WUI in our application.

20% treatment 40% treatment 60% treatment

Treatment period
No treatment

Period 1

Period 2

(a) (b) (c )

Fig. 5. Optimised fuel treatment locations and implementation time periods under each treatment intensity.

Table 6. Solutions fromeach treatment intensity scenario in terms of expected loss, number of hectares andpolygons

selected for treatments per time period

Treatment

intensity

Treatment area Total expected loss

Period 1 Period 2

Area (ha) Number

of polygons

Area (ha) Number

of polygons

Value Percentage

of no-action

Incremental reduction

in loss value

No action 0 0 0 0 1 679 378 100

20% 930 300 929 305 1 023 361 61 656 017

40% 1859 593 1860 576 640 018 38 383 343

60% 2790 867 2790 823 399 622 24 240 396

1126 Int. J. Wildland Fire W. Chung et al.



It is worthwhile to note that some of the treatment units

selected for period 1 under the 20% treatment scenario (e.g. 20%
treatment) were not reselected in the other scenarios wheremore
treated areas were allowed. The heuristic solver schedules fuel
treatments while considering accumulative and cooperative

effects of treatments across time and space. Because such effects
dynamically change with the total areas of treatment, the best set
of treatment units selected for the 20% treatment scenario might

no longer serve as the best when additional units can be treated.

Spatial and temporal effects of fuel treatments

To observe the spatial and temporal effects of selected fuel
treatments, we display the distribution of flame length, fire
arrival time and expected loss across the study landscape for
each time period using the FlamMap-MTT and heuristic solver

output files. Statistics of these fire behaviour measures and
expected loss across the landscape are presented in Table 7.

Fig. 8 compares the effects of the selected fuel treatments on

flame length across different levels of treatment intensity and
time periods. The FlamMap simulations show the fuel treatment
options modelled in this application (i.e. prescribed burn only

and thin and prescribed burn) were able to reduce flame length
within treatment units. Comparisons across the treatment inten-
sity scenarios indicate that the more areas were treated, themore

areas fell into low flame-length categories. However, the effects
of treatment on flame length were seen primarily within treated
units. Flame lengths on the grid cells associated with untreated
units in a treatment scenario are only affected by changes in the

direction of fire movement on those untreated grid cells, for
example changing what was a head fire for the no-action
scenario to a flanking or backing fire in a treatment scenario.

Fire arrival time simulated by FlamMap-MTT changed
significantly not only within treated units, but also in surround-
ing untreated areas (Fig. 9). Comparisons across the treatment

intensity scenarios show there were obvious increases in fire
arrival time as more areas were treated. Due to the continuing
effects of the first-period treatments, there were larger effects in
period 2 across the landscape.

No action 20% 40% 60%

Period 2 834 361 325 619 42 852 23 131

Period 1 845 017 697 742 597 166 376 491

-
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Fig. 6. Expected loss per time period under each treatment intensity

scenario.

Treatment in period 1

Legend

Fire path

Ignition line

No treatment

Fig. 7. Treatment units selected for period 1 under the 40% treatment

scenario overlaid with major fire paths modelled by FlamMap-MTT (Mini-

mumTravel Time) on the untreated landscape in period 1. It appears that the

treatment units are located to intercept the major fire paths.

Table 7. Statistics of fire arrival time, flame length and expected loss

per grid cell under each treatment intensity scenario

The study landscape is represented by a grid with 17 288 grid cells of 90 by

90m in size

Treatment level

Period 1 Period 2

No

action

20% 40% 60% No

action

20% 40% 60%

Arrival time (min)

Maximum 3791 4188 5282 5636 4014 6586 7343 8850

Mean 441 628 871 1380 466 1272 2664 3831

Minimum 0 0 0 0 0 0 0 0

s.d. 298 391 519 798 318 1205 1171 1638

Flame length (m)

Maximum 14.2 13.0 13.6 15.9 31 11.5 12.3 12.6

Mean 1.9 1.7 1.5 1.3 2.1 1.5 1.2 0.9

Minimum 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

s.d. 1.5 1.4 1.3 1.2 4.4 1.3 1.1 1.0

Expected loss

Maximum 576 576 512 448 512 384 84 36

Mean 51 42 36 23 50 20 3 1

Minimum 0 0 0 0 0 0 0 0

s.d. 71 59 55 38 72 26 5 3
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Changes in flame length and fire arrival time across the
landscape over time were reflected in the expected loss calcula-
tion and distribution. The more areas were treated, the more

reductions in expected loss across the landscape were realised
(Fig. 10). The accumulated effects of treatments throughout
the two time periods caused a substantially large reduction

of expected loss in period 2. However, not everywhere in
the landscape realised a reduction in expected loss compared
with the no-action scenario. Depending on spatial and temporal

arrangement of fuel treatments, some areas might experience a
shorter fire arrival time due to potential changes in fire paths
caused by the selected treatments. In our application, most of
the landscape experienced a decrease in expected loss as the

effects of treatment, but there were some marginal areas that
experienced an increase of expected loss due to the selected
treatments (Fig. 11).

It is noteworthy that even though most areas selected for
treatment existed in the Other Forest Lands value-at-risk cate-
gory (Fig. 12) owing to the fact that candidate treatments were

restricted to federal and state public lands (only a few polygons
had treatment options in the WUI and Residential categories),
most of the reduction in loss per grid cell occurred in Residential

andWUI value-at-risk categories (Fig. 13). This result indicates
that the solver was able to develop a spatial and temporal
arrangement of treatment units across the treatable areas in
a way to protect high-value areas. Similar results were observed

in Fig. 7 where treatment units were located to intercept major
fire paths to private residential and WUI areas.

Performance of the heuristic solver

Comparisons between the optimised and random solutions
confirm the ability of the optimisation algorithm employed in

the solver to strategically locate and schedule fuel treatments in
a way to improve the effectiveness and efficiency of treatments
in achieving the given objective (i.e. minimising expected loss).

Compared with the no-action scenario, the optimised solutions
reduced the total expected loss by 39, 62 and 76% under
respective 20, 40 and 60% treatment scenarios, whereas the
average reductions of expected loss from 30 random solutions

developed for each of the respective treatment scenarios were
only 10, 21 and 35% (Table 8).

The total number of iterations performed by the heuristic

solver increased with the number of treatment hectares in a
scenario because of Phase I of the solution process where
random polygon clusters were developed and added to the

solution (Table 9). A larger number of iterations was needed
to build more treatment clusters as the maximum allowable
treatment areas increased. However, solution times required for

the heuristic solver did not always increase as the number of
iterations increased. The solution time for the 40% treatment
scenario was slightly larger than that of 20% treatment, whereas
the 60% treatment scenario required the least amount of solution

No action 20% 40% 60%

Flame length
(m)

0

0–0.33

0.33–1

1–2

2–4

4�

Period 1

Period 2

Fig. 8. Changes in flame length due to scheduled fuel treatments in time periods 1 and 2.
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No action 20% 40% 60%

Period 1

Fire arrival time
(Active spread minute)

0–300

300–600

600–900

900–1200

1200–1500

1500–1800

1800–2100

2100–2400

2400–2700

2700�

Period 2

Fig. 9. Changes in fire arrival time due to scheduled fuel treatments in time periods 1 and 2.

No treatment 20% 40% 60%

Period 1

Period 2

Expected loss

0–18

18.1–47

47.1–119

119.1–257

257.1�

Fig. 10. Changes in expected loss value due to scheduled fuel treatments in time periods 1 and 2.
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time among the three scenarios. This was because the 60%

treatment scenario provided a simpler landscape from the fire-
growthmodelling standpoint than the other two scenarios. As an
example, FlamMap-MTTdid not have to simulate fire spread for

the entire landscape for period 2 in the 60% treatment scenario

because the majority of the landscape was beyond the limit of
fire arrival time set in FlamMap-MTT for this application
(Fig. 9). This limit on arrival time was based on when the
probability of fire duration drops to zero (Table 2). The solver

runs FlamMap-MTT in each iteration to evaluate solution

20% 40% 60%

Period 1

Period 2

Changes in loss

No change

Increase

Decrease

Fig. 11. Changes in the expected loss value per grid cell relative to the no-action scenario. Grey areas indicate a decrease of expected

loss, whereas black areas indicate an increase of loss due to scheduled treatments.
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Fig. 12. Percentage of areas selected for treatment in each value-at-risk

category in periods 1 and 2 (WUI, wildland–urban interface).
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Fig. 13. Average reduction in loss value across value-at-risk categories in

periods 1 and 2 (WUI, wildland–urban interface).
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alternatives and FlamMap-MTT runtime is indeed the most
time-consuming part of the search process owing to the compu-
tationally intensive nature of fire-growth modelling.

Fig. 14 graphically shows the performance of the heuristic
solver in terms of improving solution quality throughout the
search process. During Phase I, the solution improves as more
treatment clusters are added to the solution. The SA algorithm

begins in Phase II when it starts relocating clusters and evaluat-
ing new alternative solutions. Wide and narrow pulses of
solution quality across iterations in Fig. 14 indicate that the

SA algorithm occasionally accepts a worse solution (i.e. higher
expected loss) and then quickly jumps to a better solution. The
amplitude of pulses decreases as the algorithm moves towards

the end because the probability of accepting a worse solution in
the SA algorithm diminishes as temperature cools down towards
the end of the search process. The algorithm stops when the
temperature goes below the user-defined minimum temperature

and the best solution found throughout the search process is
reported as the final solution.

It is noteworthy that most solutions developed during Phase

II for a treatment scenario have more or less the same number of
hectares selected for treatment. However, the results in Fig. 14
show wide ranges of expected loss among the alternative

solutions. In addition to what was observed from the compar-
isons against random solutions, the wide range of alternative
solutions also confirms that strategically located and scheduled

fuel treatments may greatly improve the effectiveness and
efficiency of such activities in achieving desirable goals.

Conclusion

This study has developed an optimisation model to simulta-
neously schedule fuel treatments across time and space. Even

though fuel treatment planning is a computationally challenging

problem, themodel, using ameta-heuristic algorithm for solving
the large combinatorial optimisation problem, was able to find
effective arrangements of fuel treatments for the study land-

scape compared with random solutions. Earlier approaches to
multi-period fuel treatment planning scheduled fuel treatments
for one planning period at a timewithout considering continuing

effects of treatments over time.
The model’s ability to consider area constraints allows

quantifying trade-offs among various fuel treatment scenarios
and thus helps informed decision-making. For example,

Table 8. Comparison of total expected loss between the optimised

solution and the average of 30 random solutions under each treatment

intensity scenario

Treatment

intensity

Optimised

solutions

Average of random

solutions

Expected

loss

Percentage

reduction

from no

action loss

Average

expected

loss

Percentage

reduction

from no-action

loss

No action 1 679 378 0 1 679 378 0

20% 1023 361 39 1 504 343 10

40% 640 018 62 1 318 626 21

60% 399 622 76 1 095 141 35

Table 9. Solution time required for the heuristic solver

The average solution time per iteration was 32 s on a 2.83-GHz computer

with 8-processor CPU and 8GB of RAM

Treatment intensity Total number of iterations Solution time (h)

20% 3063 29.2

40% 3147 31.1

60% 3231 24.7
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Fig. 14. Performance of the simulated annealing algorithm in finding less-

expected loss solutions throughout the search process.
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multiple runs of the model with increasing maximum allowable
treatment areas can be used to assess the additional fuel
treatment benefits that can be achieved by additional treatment

areas. In addition, FVS simulation in the model provides the
ability to estimate other outputs or outcomes of the fuel
treatment activities, such as timber products and woody bio-

mass. This additional information can be then used to analyse
trade-offs between fuel treatment and other resource manage-
ment objectives, as well as to conduct financial analysis of

fuel treatment projects.
It should be noted that the effects of fuel treatments in earlier

planning periods are reflected in the vegetation and fuels
parameters predicted by FFE-FVS for one or more subsequent

periods. However, unplanned disturbances, namely wildland
fire and insect outbreaks, are not reflected in the forest vegeta-
tion simulation. The presence of such disturbances would

necessitate re-planning the spatial and temporal fuel treatments
on an affected landscape.

One notable limitation to using the optimisation model

developed in this study is that FVS-ready tree list and stand
data are not readily available. Our model, as well as any
planning process that utilises FFE-FVS to predict temporal

changes of vegetation and fuels, requires FVS-ready inventory
data that accurately represent each stand polygon in a planning
landscape. One must develop such inventory data for the
landscape before planning fuel treatments using our model if

the data do not exist. The best option for accomplishing this
appears to be imputation, which in essence matches available
inventory plots (e.g. FIA plots) with stand polygons. In addition,

surface fuel models serve as the primary input for fire behaviour
calculation in the optimisation model, and therefore should be
carefully determined and examined for reliable fire behaviour

predictions.
Another limitation is that a large amount of solution time is

required for model runs owing to the computationally intensive
process of fire-growth modelling. Because of this limitation, we

modelled only one fire scenario in our application and used it for
solution evaluation. However, modelling multiple fires with
different weather and fire scenarios would certainly help us

better address uncertainties related to fire ignitions and weather
conditions. In addition, the degree of uncertainty in the future is
often greater than the present, but our model does not take into

account this growing uncertainty. Future study should investi-
gate methods to reflect growing uncertainty on the objective
function of the model.

Lastly, the optimisation model developed in this study
works based on two already-complex simulation systems:
FFE-FVS and FlamMap. Each system has its own assumptions
and limitations. Potential users of the model should fully

understand both simulation systems, as well as data and
assumptions used in simulation, for proper use and maximum
benefit from the model.
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