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Abstract. Risk analysis evolved out of the need tomake decisions concerning highly stochastic events, and is well suited
to analyse the timing, location and potential effects of wildfires. Over the past 10 years, the application of risk analysis to
wildland firemanagement has seen steady growthwith new risk-based analytical tools that support a wide range of fire and

fuels management planning scales from individual incidents to national, strategic interagency programs. After a brief
review of the three components of fire risk – likelihood, intensity and effects – this paper reviews recent advances in
quantifying and integrating these individual components of fire risk. We also review recent advances in addressing
temporal dynamics of fire risk and spatial optimisation of fuels management activities. Risk analysis approaches have

become increasingly quantitative and sophisticated but remain quite disparate. We suggest several necessary and fruitful
directions for future research and development in wildfire risk analysis.
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Introduction

Risk analysis concerns the measurement and communication of
uncertain future events of extreme consequences (Brillinger

2010). Typically, risk analysis focuses on low probability high
consequence events that are stochastic in space and time. The
term risk is generally used to describe the chance of loss,

determined from estimates of likelihood and associated
outcomes. Risk assessments are conducted when predicted
outcomes are uncertain, but possible outcomes can be described

and their likelihoods can be estimated (Haynes and Cleaves
1999). Risk analysis can help scientists and managers better
understand the timing, location and potential effects of wildfires
on financial values and ecological systems. Risk analysis can

transparently address forest management issues and disclose
tradeoffs that other analysis techniques may not account for
(Hollenstein 2001).

A conference in 2005 held in Portland, OR, USA, reflected
substantial interest by the wildfire science community in the
application of risk analysis to fire issues (special issue of Forest

Ecology and Management (FEM) 2005, volume 211). One key
message was that clear and consistent definitions of risk were
needed (Hardy 2005; O’Laughlin 2005), though some of the

proposed terminology (Hardy 2005) differed somewhat from
previous proposals (Bachmann and Allgower 2001). The
conference emphasised the importance of quantifying compo-
nents of risk (Fairbrother and Turnley 2005) and proposed

frameworks that, compared with previous work, more closely
resembled formal risk frameworks (Finney 2005; O’Laughlin
2005). These more formal frameworks defined risk as compris-

ing three components (likelihood, intensity and effects) (Fig. 1)
and used terminology consistent with the risk analysis field.
Prior to the Portland conference, decision support and analysis

systems self-labelled as fire risk systems were often missing key
risk components.

Demand for quantitative risk-based tools has grown as wild-

fires have increasingly affected human and ecological
resources. Globally, the growing incidence and damage from
wildland fires has prompted many new efforts to build wildfire
risk systems (Loboda and Csiszar 2007; Andreu and

Hermansen-Báez 2008; Tolhurst et al. 2008; Martı́nez et al.

2009; Atkinson et al. 2010; Chuvieco et al. 2010). Current
wildland fire management policy in the USA asserts ‘sound risk

management is a foundation for all fire management
activities’ (NIFCPolicies, http://www.nifc.gov/policies/policies_
documents/GIFWFMP.pdf, accessed 2012). Moreover, the

2009 FLAMEAct requires the USA land management agencies
to revise the Cohesive Wildfire Management Strategy and
address concerns (GAO 2003a, 2003b, 2007, 2009) over the

lack of risk-basedmetrics to evaluate andmonitor fuel treatment
programs.

In response to such demands, substantial development and
improvement of tools for risk analysis have occurred in recent
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years. Advances in risk assessment systems have resulted

largely from improvements in software, systems integration,
data availability, GIS and simulation techniques (Finney 2002,
2006; Eidenshink et al. 2007; Miller et al. 2008; Rollins 2009;

and many others). Computer models can replicate spatially
explicit fire growth through heterogeneous fuels (Sullivan
2009), and map fire behaviour characteristics across large

landscapes (Keane et al. 2010). Computationally efficient
algorithms have greatly increased the feasibility of simulating
fire spread on large landscapes (Finney 2002). Geospatial data

on important social and ecological values that are potentially
affected by fire are nowwidely available for many regions of the
world. Online weather (Zachariassen et al. 2003), fuel (Rollins
2009) and burn severity (Eidenshink et al. 2007) datasets have

helped feed and validate large scale modelling efforts. All of
these technological advances have facilitated the quantification
of likelihood, intensity and effects at a range of spatiotemporal

scales.
In this paper, we review recent advances in risk analysis

approaches to address wildfire management and planning

issues.We emphasise developments since the 2005 special issue
of FEM. Space considerations prevent us from being fully
comprehensive of contributions to the problem of analysing
wildfire risk. For example, we do not cover the extensive

literature concerning danger indices, short-term fire forecasting
models and real time risk assessment, but we refer the reader to
other papers on those subjects (Andrews et al. 2007; Hardy and

Hardy 2007; McDaniels 2007; Vasilakos et al. 2007; Fiorucci

et al. 2008; Preisler et al. 2009; Calkin et al. 2011b). Instead, we
selected peer-reviewed papers from the last several years to
illustrate one ormore advances in data, models and analysis, and

to discuss important differences among the approaches for their
application in risk assessments. These papers quantified and
mapped one or more of three wildfire risk components

(likelihood, intensity and effects).

Definitions and the components of fire risk

The wildfire professional community has variously applied the
term risk. Disparate terminology has led to confusion, despite

efforts to standardise and operationalise definitions (Bachmann
and Allgower 2001; Finney 2005). We start with Society for
Risk Analysis (SRA) definitions: (1) risk is the potential for

realisation of unwanted, adverse consequences to human life,
health, property or the environment; and (2) the estimation of risk
is based on the expected value of the conditional probability of

an event occurring times the consequence of the event given that
it has occurred (SRA Glossary, http://www.sra.org/resources_
glossary.php, accessed 2012). With these definitions, risk is the
expectation of loss, and includes some assessment of three risk

components: (1) likelihood of the event; (2) expected intensity
and (3) one or more effects related to the expected intensity. In
the context of wildfire, however, we adapt these definitions

because both negative and positive effects can be realised.
Therefore, fire risk is the expectation of loss or benefit, and the
loss or benefit may occur to any number of social and ecological

values affected by fire (Finney 2005).
The terms risk, hazard, exposure, threats, vulnerability and

fire danger are frequently used but are not always defined. The
term hazard is often incorrectly interchanged with risk, and

technically refers to the potential for loss given a fire event, but
describes nothing about the likelihood of the event occurring. It
is typically calculated using fire behaviour models from fuel

information and quantified in terms of flame length, potential
for crowning fire behaviour or fire effects such as tree mortality.
Exposure describes the spatial juxtaposition of values with fire

behaviour in terms of likelihood and intensity, but does not
explicitly describe fire effects on those values. A threat is an
expected loss that has undesired social or ecological conse-

quences. Almost synonymouswith risk, the term threat excludes
the notion that fires can have beneficial effects. Vulnerability is
the potential effect of a threat and considers the adaptive
capacity of the affected entities over time. A vulnerability

assessment of awildland–urban interface (WUI)would consider
how people respond and adapt to the threat from fire via fire-
proofing structures and other mitigation efforts. Finally, fire

danger describes the short-term outlook for fire occurrence
(days, weeks), typically considered over broad geographic
regions, and makes use of short-term weather forecasts (Hardy

and Hardy 2007; Vasilakos et al. 2007). Fire danger ratings may
also include an assessment of fire behaviour (e.g. Haines index),
but intensity and effects are not explicitly considered.

Estimates of the three primary fire risk components (likeli-

hood, intensity and effects) and variables that drive them are
needed to build fire risk models and apply them for risk
assessment. As such, it is important to understand the various

ways that likelihood, intensity and effects are represented in fire
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Fig. 1. A generalised fire risk framework with the major components of a

wildfire risk analysis. Risk is a combination of likelihood, intensity and

effects. Likelihood is often estimated statistically from ignition data, or

simulated with fire behaviour models. Intensity is a major output of fire

behaviour models. Effects may be positive or negative and can be estimated

using intensity estimates and response functions. Intensity and effects

together represent hazard.
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risk analyses. For instance, some fire risk models and assess-
ments represent likelihood as ignition probability, which is
estimated from ignition data, whereas others use the probability
of burning, which refers to the probability that a fire encounters a

particular place. Although burn probability depends in part on
ignition, it also depends on the subsequent spread of fire, which
can be estimated from historical data on area burned or derived

at finer scales using fire simulation methods.
There are also inherent assumptions in the numerous fire

behaviour models used to predict fire risk (Cruz and Alexander

2010). Fire intensity is represented with a range of metrics
including fireline intensity, flame length and crown fire poten-
tial. Estimates depend on the particular fire behaviour model

used and assumptions about weather and fuels. For instance,
flame length might be estimated by simulating fire behaviour
under constant weather conditions (e.g. Finney 2007), or by
averaging many estimates simulated under a range of probable

weather conditions and fire spread directions (heading, flanking
and backing) (e.g. Ager et al. 2010b).

The effects term in a fire risk model represents the change in

ecological, social and economic values associated with fire
intensity. Effects can be quantified with discrete or continuous
response (loss–benefit) functions, resulting in negative or posi-

tive change in value. First-order fire effectsmodels can be useful
in effects analysis to measure ecological effects of fires in terms
of treemortality, erosion, carbon and other ecosystem properties

(Reinhardt and Dickinson 2010). Structure ignition models
(Mell et al. 2010) may be important for quantifying effects as
well, although these models are not yet operational for risk
mapping efforts.

Fire risk is a combination of likelihood, intensity and effects
(Fig. 1). A high likelihood of fire does not necessarily connote
high fire risk if fire intensity is too low to have much of an effect

on a value of concern. A basic challenge in fire risk assessment is
the interpretation of similar levels of risk generated from
entirely different combinations of risk components. For

instance, a low probability–high effect situation can have the
same estimated risk as a high probability–low effect situation.

Likelihood: wildfire occurrence and burn probability

Fire likelihood can be represented as either ignition probability
or burn probability. Typically, ignition probability is statisti-

cally modelled using fire occurrence data whereas burn proba-
bility is estimated via simulation. The two representations can
exhibit vastly different spatial patterns (Fig. 2), and tend to be

used for different purposes. For example, estimates of ignition
probability are used in initial attack simulations and burn
probabilities are more often applied in fuels management

planning problems.
Numerous studies have framed wildfire risk in terms of

ignition and analysed spatial and temporal patterns of historic
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Fig. 2. Map of continental US quantifying the difference between ignition probability and burn probability calculated with the

FSIM model (Finney et al. 2011b). Image from Calkin et al. (2011c).
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ignition data (Prestemon et al. 2002; Preisler et al. 2004; Genton
et al. 2006; Sturtevant and Cleland 2007; Syphard et al. 2008;
Catry et al. 2009; Martı́nez et al. 2009). Statistical approaches

have been used to explore spatial ignition patterns, and to map
the probability of ignition occurrence using human and biophys-
ical variables. Correlations between fire ignitions and landscape

features are often significant, and depend on whether ignitions
are anthropogenic vs natural in origin. For instance, human-
caused ignitions are typically correlated with variables such as

density of agricultural and livestock activities, housing density,
distance from transportation routes and facilities, and land use
(Nunes et al. 2005; Loboda and Csiszar 2007; Martı́nez et al.

2009). Some studies have shown the importance of human

variables as well as biophysical variables in predicting spatial
patterns of human-caused ignitions (Syphard et al. 2008; Catry
et al. 2009). In contrast, naturally caused ignitions tend to be

correlated with physical environmental variables such as fuel
moisture, relative humidity and temperature (Preisler et al.

2004).

Where human-caused ignitions dominate wildfire occur-
rence, the study of ignition probability can be especially
valuable for managers, law enforcement and fire agencies. For

example, estimates of ignition probability are used to simulate
initial attack effectiveness (Fried et al. 2006; Haight and Fried
2007). Worldwide, human activities are responsible for most
wildfire ignitions, and more than 90% of forest fires in the

Mediterranean countries are caused by people (FAO 2007). Not
surprisingly, therefore, many studies focus on areas where
ignitions are primarily anthropogenic. Because these areas also

tend to have high spatial density of social values, there is great
potential for expected loss from fire. In this context, likelihood
measured as ignition probability can serve as a surrogate

measure of wildfire risk and be used to design prevention
planning programs to reduce ignition frequency (Martı́nez
et al. 2009; Prestemon et al. 2010). Such studies have also led
to the development and formulation of comprehensive risk

assessment frameworks that link ignition probability to other
risk components (Loboda and Csiszar 2007).

However, in regions like the western USA where large fires

often spread over long distances (e.g. 20–50 km), likelihood is
better represented by burn probability. Thus, spatial ignition
patterns may accurately reflect fire likelihood where fires are

small (e.g. 1–10 ha), but where fires are larger, the estimates of
likelihood need to account for fire spread from distant ignitions.
One way to estimate spatially explicit burn probabilities is to

simulate many thousands of fires with a mechanistic fire growth
simulation (Miller et al. 2008). This approach has been used in
risk assessment systems fromAustralia, Canada and theUSA. In
Australia, the Bushfire risk management model used a spread

model called PHOENIX (Tolhurst et al. 2008) that accounts for
fuel, weather and topographic conditions as a fire grows and
moves across the landscape. In Canada, the spread model called

Prometheus was used to construct burn probability maps (Braun
et al. 2010). In the USA, several studies have employed fire
spread models to map burn probability (Ager et al. 2007, 2010b;

Parisien et al. 2007; Yang et al. 2008; Moghaddas et al. 2010).
Until fairly recently, however, the ability to simulate fire

spread across landscapes for the purpose of estimating burn
probability was limited by computational and technological

barriers. Early attempts to represent landscape spread when
mapping fire likelihood included GIS-based least cost path
approaches that solve for the shortest travel time between pixels

on a raster landscape (e.g. Miller 2003a) and the use of fire
growth models such as FARSITE (Roloff et al. 2005; Schmidt
et al. 2008; Carmel et al. 2009). The computational demands of

using fire growth models limited the number of fires that could
reasonably be simulated, making it impractical to generate burn
probability for large landscapes. The reprogramming of fire

spread algorithms using aminimum travel time (MTT) approach
(Finney 2002) dramatically reduced computation time. Fire
growth models like the original FARSITE and Prometheus
simulate mechanistic fire spread as a vector wave front whereas

the MTT approach solves for fire arrival time across the
landscape, producing nearly identical results given constant fire
weather. Taking advantage of efficient parallel computing, the

MTT algorithm made it feasible to generate burn probability
surfaces for very large (.2� 106-ha) landscapes, thus facilitat-
ing the use of wildfire likelihood in risk assessments in the USA

and elsewhere (Salis et al. 2010), and supporting incident
management and strategic landscape planning (Finney 2006;
Calkin et al. 2010; Finney et al. 2011a, 2011b). Other fire spread

models exist (Sullivan 2009) but have not seen the same
widespread application due to their complexity and data
requirements.

Wildfire hazard: intensity and effects

We consider the latter two risk components (intensity and

effects) together to represent hazard. In most models they are
intertwined (e.g. Keane et al. 2010), making it difficult to
discuss advances in one vs the other risk factor. In some cases,

the effects are not quantified but instead are merely implied such
as in exposure assessments that describe the juxtaposition of fire
behaviour and values of concern (Ager et al. 2012). Therefore,
we discuss studies that focus on intensity and effects under the

broader category termed hazard.
Mapping hazard often relies on wildfire behaviour models.

Models for predicting surface and crown fire rates of spread

(e.g. Rothermel 1972, 1991; Forestry Canada Fire Danger
Group 1992), crown fire transition and propagation (Van
Wagner 1977, 1993; Scott and Reinhardt 2001), and a host of

potential fire effects (e.g. tree mortality, fuels consumption,
smoke emissions, soil heating and erosion), are used singly or in
combination to map hazard. Various applications are available

to do this, including the Canadian Forest Fire Danger Rating
System (Alexander et al. 1996), NEXUS (Scott 1999), Fire and
Fuels Extension to the Forest Vegetation Simulator (FVS-FFE)
(Reinhardt and Crookston 2003), BehavePlus (Andrews 2007)

and the First Order Fire EffectsModel (FOFEM) (Reinhardt and
Dickinson 2010). These tools were originally developed to
generate point estimates of fire behaviour and associated effects,

and the use of GIS approaches is necessary to enable mapping
across large landscapes. In Canada, GIS tools were integrated
with the fire danger rating system to map potential fire behav-

iour characteristics (Englefield et al. 2000), and in the USA the
application FlamMap greatly improved the feasibility of map-
ping fire intensity across large landscapes (Finney 2006).
FlamMap calculates the fire behaviour that would be expected
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under presumed weather conditions (commonly extreme fire
weather) for every pixel on a rasterised landscape. Landscape
scale capabilities are now being added tomodels like FOFEMas

well (Hamilton et al. 2009). In general, however, wildfire hazard
models do not incorporate spatiotemporal patterns of fire
occurrence or probability of burning. Ignoring the geometry of

fire spread, the mapped intensity for each pixel typically
assumes a heading fire and therefore represents the maximum
heat output. Widespread use of fire behaviour and effects

models for hazard calculations has motivated numerous
technical reviews and critiques (Stratton 2006; Peterson et al.

2007; Varner and Keyes 2009; Cruz and Alexander 2010).
A recent approach to mapping fire hazard – FIREHARM –

made some notable advances in high-resolution (,100-m)
effectsmodelling (Keane et al. 2010). This approach uses spatial
daily historical climate (DAYMET; Thornton et al. 1997) to

simulate daily fuel moisture, thus incorporating the historical
range of temporal variability in fire weather conditions. This is
distinct from many other approaches that map hazard assuming

a static, and usually extreme, weather condition. FIREHARM
uses daily variation in fuel moistures and existing fire behaviour
and fire effects models to map probabilities of undesirable fire

events. Probabilities are derived from the temporal variability in
weather, not from the likelihood of ignition or fire occurrences.
Ignitions and fire spread are not explicitly simulated; fire
behaviour characteristics represent heading fires only. Even

so, these maps can take several days to create for a large
landscape because moistures and fire characteristics are
simulated for every day in the climate database. An alternative

‘event’ mode in FIREHARM that is less computationally
intensive and more typical of hazard mapping efforts may be
better suited for large, regional analyses. In this mode, the

hazard ismapped for a specified set of weather and fuelmoisture
conditions.

Fire intensity can be translated to change in value using fire
effects models or ‘response functions.’ The latter describe how

fire qualitatively or quantitatively changes the value of some-
thing. In most risk assessments, response functions are implied
to be loss functions: any fire is assumed to have a negative

outcome, and more intense fire behaviour is assumed to have a
worse outcome. For example, a risk map created with a simple
overlay of fire probability and the WUI implicitly assumes that

any fire will cause a loss to WUI values (Haight et al. 2004; Bar
Massada et al. 2009; Atkinson et al. 2010). Although complex
response functions that vary fire effects with intensity have been

used (Ager et al. 2010a, 2010b; Calkin et al. 2010), and a wide
range of models can be used to examine fire effects (Massman
et al. 2010; Reinhardt and Dickinson 2010), a loss is usually
assumed. In the USA, this implicit assumption of loss was

concordant with federal fire policy before 2009 wherein benefi-
cial effects of wildfires managed during suppression efforts
were not considered (Lasko 2010). However, fires do not

necessarily result in negative effects, and fires can actually
benefit resources such as fire-dependent species. Positive and
negative ecological fire effects have been mapped for risk

analysis, by coupling loss–benefit functions for different eco-
logical resources with fire intensity proxies such as flame length
and crown fire potential (Fig. 3) (Black and Opperman 2005;
Calkin et al. 2010).

Integrating likelihood and hazard

Describing fire risk requires the integration of likelihood and

hazard. Two general approaches have been used for this inte-
gration: the development of risk ratings or indices, and what we
call the integral risk model (IRM).

In the first approach, discrete indices describe likelihood,
hazard and supporting information, which can then be combined
into a composite risk score. Commonly called ratings, most of

these indices do not employ burn probabilitymodelling, butmay
incorporate measures of rate of fire spread. One example is a
decision support system for assessing danger of severe fire and
prioritising subwatersheds for fuel treatment (Hessburg et al.

2007). To map the likelihood of severe fire, fire behaviour
characteristics were simulated with the hazard model
FIREHARM under 90th percentile weather conditions and

combined in a logic model with data on fuels, vegetation
condition (FRCC; McNicoll and Hann 2004) and ignition risk.
Ignition risk in this case was derived from vegetation greenness,

drought indices and lightning strike occurrence. The output of
the logic model was essentially a map of the potential for severe
fire, which was then evaluated in the context of other landscape

attributes. Results for a 4.8� 106-ha landscape showed that
subwatersheds in poor condition with respect to fire were not
necessarily the best candidates for treatment because additional
factors such as the amount of WUI needed to be considered as

well. Thus, the ecological status of an area could be placed
within a social values context to inform decision making. The
application appears to be expandable, potentially making it

applicable for strategic planning at national and regional scales,
as well as tactical planning at local scales. A second example
modelled the probabilities of human- and lightning-caused

ignition probabilities, and combined them with indices describ-
ing fuel moisture content, rate of spread and flame length
(Chuvieco et al. 2010). The resulting index, which integrated
aspects of both likelihood and intensity, was then combinedwith

information on socioeconomic values and the vulnerability of
those values to fire. Differences in the resulting integrated risk
index among four large regions in Spain were described,

highlighting the importance of considering the multiple
components of wildfire risk.

The risk index and rating approach has been used widely for

state and regional assessments in the USA (Andreu and
Hermansen-Báez 2008). These assessments serve a range of
functions including the identification of areas that are most

fire-prone and amenable to mitigation. They also can facilitate
communication among fire management agencies and local
residents to address community protection priorities. A host of
indices are surrogates for risk factors, describing fire behaviour,

ignition potential and fire spread rates. Likelihood is informed
from ignition indices and surface and crown fire behaviour
models are used to estimate fire behaviour characteristics. Fire

intensity estimates assume heading fires only, and the direction
of spread is not considered. Although fire events are not
modelled, burned area is predicted by translating spread rates

to fire size based on historical relationships.
Risk rating systems for wildfire have several inherent

drawbacks. First, when creating composite indices, weights
must be assigned based on assumptions about each index’s
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contribution to overall risk. Even minor adjustments to these
relative weights can result in substantially different estimates of

risk. Second, the somewhat idiosyncratic methods used in these
rating systems make it difficult to compare across assessments.
Third, composite scores are dimensionless and without measur-

able units, making them difficult to interpret. Finally, risk
ratings are not expressed in the probabilistic terms that are
consistent with the field of risk science.

An approach to integrating likelihood and hazardwith fewer
drawbacks is that of the Integral Risk Model (IRM). IRMs have
long been a goal of the risk assessment community and incor-

porate likelihood and hazard to quantify expected change in
value. Finney (2005) proposed a formula to seamlessly integrate
likelihood, intensity and effects on multiple values as:

EðNVCjÞ ¼
X

i

pðfiÞRFjðfiÞ ð1Þ

where E(NVCj) is expected net value change to resource j,
p(fi) is probability of a fire at intensity level i and RFj(fi) is
‘response function’ for resource j as a function of fire intensity

level i.
This formula can be computed for a geographic area of any

size, but is static in that it applies to a particular time period. In

the IRM formulation, the expected net value change to a
resource can be positive (i.e. fire confers a benefit) or negative
(i.e. fire results in a loss) (Rideout and Omi 1990). Furthermore,
the calculation of expected loss includes burn probability

estimates for all possible fire intensities, allowing marginal
probabilities of fires of different fire intensities to be considered.

An IRM was used to analyse fuel treatment effects on risk to

northern spotted owl (Strix occidentalis caurina) habitat in
central Oregon, USA (Ager et al. 2007). Burn probabilities
were estimated by simulating 10 000 wildfires with random

ignition locations andweather conditions representative of those
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Fig. 3. Map of fire effects on whitebark pine generated with the Fire Effects Planning Framework (FEPF) assuming 80th percentile fire weather

conditions (Black and Opperman 2005). Desirable (yellow) or highly desirable (green) fire effects on whitebark pine are predicted for most areas and
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occurring during a recent large fire within the study area. The
simulations were performed with a modified version of
FlamMap that generated a frequency distribution of flame

lengths along with the probability of their occurrence. This
allowed intensity information to be used in a different way than
previous studies because model outputs also included an expec-

tation of fire intensity (e.g. flame length) that consideredwhether
the fire was heading, backing or flanking into the pixel. Loss
functions were developed with the Forest Vegetation Simulator

(Crookston and Dixon 2005) and described a threshold flame
length at which fire adversely affected habitat conditions. The
burn probability–flame length distributions were combined with
the loss function to calculate expected loss of habitat using

Eqn 1. Another study used a similar approach to calculate the
effect of fuel treatment strategies on the expected loss of old
growth ponderosa pine (Pinus ponderosa) (Ager et al. 2010b).

A drawback of the above studies is that they focussed on a
small number of values, therefore failing to integrate risk across
the spectrum of issues for which national forests are managed.

The IRM approach has been extended to consider multiple
highly valued resources and a much larger geographic scope
(Calkin et al. 2010). The resource values were represented by

social, economic and ecological attributes mapped across the
continental USA. Wildfire simulation outputs were used to
estimate burn probabilities and flame lengths, and stylised
loss–benefit functions were applied to calculate expected net

value change (NVC) for each of 12 values. The resulting
framework thus accommodated multiple resources with a suite
of generalised response functions that translate fire effects into

economic terms based on flame length. This effort did not
attempt to monetise resources, instead estimating NVC with
an area-based proxy defined as the equivalent area lost or gained

for a particular resource value. It was calculated by multiplying
a percentage coefficient (relative NVC) for each flame length
category by the probability of fire at that flame length category,
which in turnwasmultiplied by pixel area. This approach allows

a wide diversity of resources and values to be considered, such
as populated areas, fire-adapted ecosystems, fire-susceptible
species, energy infrastructure, recreation infrastructure, munic-

ipal watersheds and air quality. The IRM represents a significant
step toward fully implementing a framework of the sort pro-
posed at the Portland conference in 2005, combining all three

components of risk into a quantitative measure.

Advances in modelling temporal dynamics of fire risk

One important development in the arena of risk analysis has
been the ability to model temporal dynamics of fire risk. Most
risk studies, including those described in the preceding section,

have used static response functions, considering only immedi-
ate, first-order fire effects (Reinhardt et al. 1997). However,
response functions that describe only short-term fire effects can

underestimate effects in the case of delayed tree mortality, or
overestimate effects in the case of rapidly recovering vegetation.
Longer term dynamics in vegetation, fuel, climate and land use

change substantially affect wildfire incidence and effects
(Westerling et al. 2006; Guzy et al. 2008). Several advances
have been made to consider how fire risk changes through time
and in response to management.

One attempt to include the post-fire recovery response in a
risk assessment framework is the Fire Threat Model (FTM)
(Loboda and Csiszar 2007). FTM estimates fire risk from fire

danger (what we would term likelihood and intensity) and
values at risk (i.e. effects), but then also considers recovery
potential and fire suppression capabilities. Although details on

the recovery module have not yet been published, recovery
potential in FTM is estimated from the severity of the fire’s
effects, information on the ability of an affected resource to

return to its pre-burn condition and the timeframe for the
recovery to occur.

Another effort developed a statistical wildfire damage risk
model that estimated an intensity-weighted risk that was, in part,

a function of previous wildfires and prescribed fires (Mercer
et al. 2007). Other variables affecting the estimates of risk
included pulpwood volume, housing density and Niño-3 sea

surface temperature, a proxy for drought. This statistical dynamic
risk model was then used in a simulation experiment to simulate
net economic outcomes from wildfire for different levels of

prescribed fire over a 100-year period.
Stand-based vegetation succession models have been used to

address temporal change in risk components. For example,

Finney et al. (2007) used a custom version of FVS-FFE with a
parallel processing feature to examine several different fuel
treatment scenarios on fire likelihood for three western USA
study areas. Scenarios included randomly and optimally placed

fuel treatments (Finney 2007) with varying sizes of treatment
units, rates of area treated over time and amount of area put into
untreated reserves. Over the 50 years simulated, optimisation

struck a balance between re-treating previous units and treating
new stands. One simplification was that it assumed no random
wildfire disturbances occurred during the 50-year simulation.

Landscape Fire Simulation Models (LFSMs) such as
LANDIS (Scheller et al. 2007) simulate disturbance and suc-
cession and have been used to study the interplay between fuels
management and fires. For example, Sturtevant et al. (2009)

simulated fire, fuels management and forest dynamics for 250
years to evaluate risk mitigation strategies for a multi-owner
landscape inWisconsin, USA. Results highlighted the difficulty

of maintaining fire-dependent pine and oak forest, which,
without natural ignitions requires active management over the
long-term. Another interesting effort used LANDIS coupled

with an urban growth model to simulate risk to California
coastal shrubland from WUI expansion (Syphard et al.

2007a). Risk to these habitats is largely from increased fire

frequency due to increased human ignitions, and so the expan-
sion of the WUI is of particular concern. Although it may have
been feasible with this simulation approach to examine the fire
risk to WUI at the same time as examining fire risk to coastal

sage shrublands, this was not done.

Advances in spatial optimisation

Another important area of development is that of spatial opti-
misation of fuels management activities. Riskmetrics have been

used to drive optimisation of fuels management with the goal of
finding cost-effective timing and spatial locations of fuel
treatments. However, optimisation is extremely challenging due
to the spatiotemporal complexity of environmental variables in
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the wildfire process. Several approaches have made notable
progress.

Several simulation approaches have been used to identify

spatially efficient fuel treatment designs for disrupting land-
scape fire spread rates. In one, theMTT algorithm first was used
to identify the fastest fire travel routes among nodes in a

landscape (Finney 2007). Subsequently, a heuristic approach
was used to locate fuel treatments to efficiently disrupt these
travel routes. The method was demonstrated for a simple

stylised landscape as well as for a complex landscape near
Flagstaff, Arizona, but only for a selected fire weather scenario
representing conditions of the ‘problem fire.’ A similar
approach used a shortest path heuristic algorithm to find harvest

locations that would disrupt fire spread and protect timber
volume across a 13 000-ha landscape in Alberta, Canada (Palma
et al. 2007).

More complex simulation approaches have considered
multiple risk components in the spatial optimisation of fuel
treatments. For example, one approach estimated fire risk from

uniform ignition probabilities, conditional probabilities of cell-
to-cell fire spread, intensity and values at risk, and then located
treatments using a mixed integer programming model to mini-

mise the sum of expected fire loss (Wei et al. 2008). Likelihood
of fire was assumed to accumulate across the landscape in
downwind directions and the effect of fire on values depended
on fire intensity. This study demonstrated that the spatial

allocation of treatments was much more complicated when
more than one wind direction was considered because major
travel routes for fire differ. Another approach combined a

physical fire model with a stochastic spatial-dynamic optimisa-
tion model to locate fuel treatments that maximise timber
harvest profits (Konoshima et al. 2010). A simplified stylised

landscape with largemanagement units was used to demonstrate
the spatial tradeoffs between harvesting and fuel treatments.
Initial landscape conditions, ignition locations and weather
conditions were used to generate spatial patterns of fire likeli-

hood, which were then used to find the optimal spatial allocation
of fuel treatment and harvest for maximising profit. Optimal
management depended on the net value of timber and the

probability that value will be lost (i.e. risk). Net value was
influenced by economic parameters such as stumpage prices,
and fire risk was influenced primarily by the fire environment.

A study by Lehmkuhl et al. (2007) used fire spreadmodels and a
heuristic evolutionary algorithm to simultaneously satisfy mul-
tiple objectives for fuel treatment and northern spotted owl

habitat.
More recently, the temporal aspect has been considered in

optimisation studies. For example, the approach by Konoshima
et al. (2010), above, used a dynamic optimisation model to

determine the spatial configuration of forest management
activities that would maximise net revenue in the current time
period plus the expected maximum net present value of future

periods. One study used the same shortest path algorithm as the
Canadian example above (Palma et al. 2007) to identify critical
harvest stands but also used a planning model to maximise the

present net worth of timber harvested over an 80 year planning
horizon (Acuna et al. 2010). Another study examined long-term
tradeoffs between profitability and fire risk for Catalonian
forests (González-Olabarria and Pukkala 2011). Five 30-year

planning scenarios with different objectives were evaluated in
terms of their effect on net income and fire risk components in
the 10 years subsequent to the planning period. The approach

considered potential losses from fire, net income from different
harvesting methods, and the effect of those harvesting methods
on fire risk. A cellular automaton fire spread model was used to

generate burn probabilities that were used by a simulated
annealing optimisation algorithm to locate forest treatments.
The study found that considering the potential losses from fire

resulted in plans that generated more profit and lower fire risk.
Due to necessary simplifications, most optimisation efforts

provide improved arrangements or scheduling of fuel treatments
rather than truly optimal solutions (e.g. Finney 2007; Acuna

et al. 2010). Treatment optimisation algorithms are computa-
tionally intensive, with computational demands increasing
exponentially with the size of the landscape, number of treat-

ment choices and degree of stochasticity included. As such,
more complex formulations (e.g. Konoshima et al. 2010) are
demonstrated on highly simplified landscapes. Progress in

optimisation has been incremental and true optimisation on real
landscapes with real management considerations remains an
intractable problem. Early studies did not use complete

measures of risk and ignored intensity, but more recent studies
have incorporated response functions that depend on intensity.
Notably, all of the spatial optimisation approaches we discussed
estimate likelihood as some kind of spatial burn probability,

thereby acknowledging the importance of landscape fire spread.

Future directions for research and development

We expect the demand for risk-based fire management decision
support to continue, and discuss several particularly necessary

and fruitful areas for future research and development:
(1) integrate decision environments; (2) address temporal
dynamics; (3) improve resource valuation; (4) build empirical

knowledge and (5) validation and communicate uncertainty.

Integrate decision environments

Two decision environments can be supported with fire risk

analysis. The first is the management of fuels to minimise the
long-term expected loss from fire. In this strategic planning
environment, decision support tools help managers decide how

to alter fuels, where to place fuel treatments and how often to
treat (Reinhardt et al. 2008). The second decision environment
is the management of ignitions. In this real-time fire manage-

ment environment, decision support tools and established
strategic plans help managers decide whether to allow, control
or suppress a fire. Depending on the timing, location and
weather, fire may be deemed a desired natural process that

regulates fuels and restores fire resilient forests (Noss et al.

2006), or it may be considered an undesired threat to social
values and therefore become the target of active suppression.

Most applications discussed in this paper demonstrate how
quantitative risk analysis can help with the fuels management
decision environment or with initial attack decisions. Only a few

have demonstrated the use of risk analysis for supporting
decisions to allow ignitions to burn.

Risk analysis is essential for supporting decisions to
manage ignitions, especially for adopting alternatives to full
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suppression. Restoration of natural fire regimes is necessary to
manage long-term wildfire risk (Schoennagel and Nelson 2011)
and wildfire is probably the way most areas will be treated for

fuel reduction. In the USA, the flexibility in current fire policy
intrinsically acknowledges that fire can have negative and
positive outcomes (Lasko 2010). Risk tools will need to better

factor in the beneficial effects of fire so that these might be
maximisedwhileminimising losses. As fires are allowed to burn
longer, risk analyses will need to consider a wider range of

weather conditions and will need to consider topological rela-
tionships, such as those that extend the local effects of a
treatment across larger areas (Ager et al. 2010b). Risk is also
transmitted in complex ways across different land ownerships.

For example, most of the significant fires that cause damage to
residential structures start in vegetated areas close to the WUI
where the likelihood of human-caused ignitions is high

(Syphard et al. 2007b). Understanding the sources and spatial
transmission of risk can help inform mitigation efforts such as
preventing human-caused ignitions, reducing the potential for

structure ignition (Cohen 2008), and can lead to better
predictions of proposed treatment effectiveness (Finney 2007;
Finney et al. 2007).

A decision in one of these management environments affects
future decisions in the other. For example, fuel treatments may
protect valued resources so that ignitions can be allowed to burn
unimpeded in the future (Suffling et al. 2008). Although the

location and timing of a wildfire cannot be planned in the same
way as a prescribed burn or thinning operation, wildfire itself
can be a very effective fuel treatment (Miller 2003b). Perhaps

most salient is that fire suppression in the real-time incident
management environment transfers risk to the future fuel
management environment. Risk analysis needs to support both

types of decisions and represent how actions taken in one
decision environment transmit risk to the other. At a minimum,
the framing of any risk analysis problem should acknowledge
the existence of these two environments. Most efforts to date

have had a narrow focus that may contribute to the misaligned
incentive structure for managers lamented by Calkin et al.

(2011a).

Address temporal dynamics

Changes in risk as a result of any decision made about fuels,
ignitions or both can extend through time and need additional
attention (Calkin et al. 2011a). Models without a temporal

dimension cannot be used to evaluate cumulative effects or risk
management activities over most planning timeframes. The
potential effects of climate change on fire regimes further
reinforce the need for temporal risk tools and frameworks for

decision support. A change in moisture status and fire danger
will likely be accompanied by a change in the exposure to fire
because of increased ignitions and longer seasons for wildfires

to spread. Treatment schedules that are optimal today may not
be optimal in 20 or 30 years due to changes in seedling estab-
lishment and growth rates. The current pace of climate change

makes it likely that discernable changes could be seen well
within the timeframe of fire risk management.

Risk tools, therefore, need to increase in complexity and
account for climate-mediated vegetation and fuel dynamics.

Successfully coupling the complex processes of fire and
vegetation succession is non-trivial, however. Processes of fire
spread and intensity have to be linked to processes of vegetation

succession and then to fire effects. For example, although the
stand-based FVS-FFE is already widely used in the USA for
modelling succession and fire effects, it is not yet fully compati-

ble with fire spread tools. Although LFSMs can simulate fire and
vegetation dynamics (Keane et al. 2004), most substantially
simplify fire spread processes and simulate fire effects with rule-

based functions that do not depend on fire intensity. Further-
more, many LFSMs were developed and parameterised for a
particular ecosystem or geographic area and may not easily be
applied to other landscapes. The succession and disturbance

processes in these models require substantial parameterisation
and data that may not be available for many study areas. Finally,
most of the vegetation dynamics models available for the

landscape scale do not handle species-specific climate
responses.

Improve resource valuation

Risk can be analysed for a wide variety of resource values

(Calkin et al. 2010) but simultaneously analysing risk to
multiple values while considering multiple objectives is a more
difficult challenge (Calkin et al. 2011a). Although risk analysis

has been used to evaluate different treatment strategies for their
ability to maximise net economic benefits (Mercer et al. 2007),
and to simultaneously protect socioeconomic and ecological
values (Ager et al. 2010b), fire is usually assumed to have

detrimental effects. A next step will be to use risk analysis to
evaluate strategies that increase the expected benefits of fire for
some resource values while decreasing the expected losses to

others. New response functions will be needed for assessing risk
to ecological resource values, especially those that stand to
benefit from fire. These response functions may not be linear or

monotonic and the expected net value change in the short-term
may be completely opposite to the change expected in the
long-term.

We expect that the demand for quantitative risk frameworks
will continue, with an increasing need to quantify resource
values. Although recent efforts have demonstrated how to derive
quantitative metrics that are consistent across many different

types of highly valued resources (Calkin et al. 2010), their
interpretation can quickly become obscured when aggregated or
generalised. The econometric approach has great utility for

illuminating the risk components that influence decisions, but
a major challenge will be quantifying a diversity of non-market
values using a common metric that may not be monetary. For

example, in the IRM formulation, the equivalent area lost or
gained used by Calkin et al. (2010) was a good attempt at
quantifying expected NVC in a non-monetary, yet meaningful,
way for ecological resources. Other metrics need to be explored

for quantifying fire effects on ecological resources and
communicating expected benefits along with expected losses
(Black and Opperman 2005).

Build empirical knowledge

Ultimately the strength of wildfire risk analysis depends on
knowledge derived from empirical observations. As technology
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allows risk analysis tools to become increasingly complex and
sophisticated, there is an ever increasing need for basic empir-
ical data to parameterise models. Although data on fire

occurrence, weather and fuels are becoming more widely
available (Stocks et al. 2003; Zachariassen et al. 2003; Rollins
2009), data on fire effects are still lacking for many species and

ecosystems. Information about longer-term fire effects is
particularly sparse. For example, we know little of how post-fire
forest structure or habitat condition changes over several years

or after repeated burning. Values-at-risk are ultimately a human
construct, and improvements in valuation may require a better
understanding of human preferences and attitudes. Further
investments in fire behaviour experimentation will be needed to

support fundamental improvements to fire spread and structure
ignitionmodels, and to better understand basic processes such as
those responsible for the stopping or slowing of fire spread.

Validation and communicate uncertainty

Validation of risk analyses typically involves the examination of
individual risk components in relation to empirical data. For

example, individual likelihood and hazard indices were
compared with observed fire occurrence data in Spain
(Chuvieco et al. 2010). Modelled burn probabilities can be

comparedwith historic burn probabilities if adequate fire history
data exist (Finney et al. 2011b). In addition, we suggest that
verification tests and sensitivity analyses are useful approaches
to evaluating risk models, whereby input parameters are

systematically varied to generate a suite of model outputs. The
goal of a verification test is to ensure that the model behaves as
intended, and can be used to establish the domain of applica-

bility of the model. The goal of a sensitivity analysis is to
determine which model parameters have the greatest influence
on model output; ideally these are parameters whose values are

known with a high of degree of certainty.
Several sources and types of uncertainty currently limit the

use of risk analyses for fire management (Thompson and Calkin

2011). Risk analyses characterise the uncertainty associated
with the variability inherent in fire occurrence patterns, fire
behaviour, fire effects and even the monetary or non-monetary
value of an affected resource. The expected NVC computed in

the IRM formulation is not exact because it has been computed
using imperfect models that contain imperfect assumptions and
imperfectly known functional relationships, and that are para-

meterised with imperfect and limited data. These uncertainties
propagate as models get increasingly complex. Conceptually,
there is a confidence interval around the expected NVC that

could communicate these uncertainties but has not yet been
quantified.

Conclusions

The fire research and management communities have come a

long way in the development and application of wildfire risk
concepts in 10 years. Prior to 2000, there was little evidence of a
common language or definition. Several risk frameworks that

have emerged recently employ a common definition of risk that
includes likelihood and hazard. The IRM, in particular, sets the
stage for future developments. It is a robust framework that
exemplifies and incorporates the more promising advances we

have discussed. Its ability to evaluate multiple resource values
under variable weather conditions in a quantitative framework is
powerful information for policy makers, budget planners and

land managers.
As risk assessment tools become increasingly quantitative,

they will likely supplant the use of qualitative (e.g. Chuvieco

et al. 2010) indices. This trend should also facilitate the
application of risk to optimisation problems. These increasingly
quantitative frameworks are already supporting a wide range of

fire and fuels management planning scales, from that of the
individual incident or fuel treatment project, to the national or
subcontinental scale. For example, burn probability modelling
and related risk analysis tools have moved from the research

domain to centralised management systems in federal land
management agencies in the USA to strategically plan budgets
(Fire Program Analysis FPA http://www.fpa.nifc.gov, accessed

2012), support wildland fire and fuels management decisions
(e.g. Calkin et al. 2011b) and monitor trends in hazard and risk
over time (Calkin et al. 2010).

Progress in risk assessment approaches has not been logical
or linear. Existing fire risk tools are continually modified with
new features, linked and hybridised with other tools and

applied to newmanagement problems. Developers of tools have
tended to focus on one risk factor at a time, often improving the
ability to model the single factor, while simplifying the other
two. The research and development community remains

fragmented in this area. To simplify the daunting complexity
of natural resourcemanagement issues, many fire risk tools have
been developed and applied to narrowly defined problems and

decision environments. As a result, the application of risk
analysis to address numerous ecological and policy questions
has lagged. Additional case studies are needed at a range of

spatial and temporal scales that are more broadly framed to
inform critical issues of concern in wildfire management.
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