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A B S T R A C T

In many parts of the western United States, wildfires are becoming larger and more severe, threatening the 
persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire 
and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. 
We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed 
for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, 
USA. The Black Fire burned over 131,000 ha in mostly low- to middle-elevation ponderosa pine and mixed 
conifer forests, but burned only ~4 % at high-severity, leading us to question what factors led to this fire burning 
in such an ecologically beneficial way and aligning with the natural range of variation in terms of burn severity 
for this region. In a landscape scale analysis, we found that areas that experienced more prescribed fire, wildfire 
managed for resource benefit, and wildfire (hereafter ‘treated area’) best explained patterns of burn severity in 
the 2022 Black Fire, outweighing the importance of fire weather and vegetation factors. A fully treated area 
experienced 51 % less high severity fire than an untreated area, on average, across the Black fire landscape. In a 
fine-scale fire progression analysis, we found that high-severity fire that encountered a previously treated area 
experienced a 21–55 % decrease in burn severity within 250 m of the treated area boundary. In sum, we found 
that previous treatments and wildfires that occurred within the Black fire perimeter were highly effective in 
influencing patterns of burn severity and appear to be the reason why the Black fire was restorative, and not 
catastrophic. Our results suggest that the severity of other large fire events can be reduced by increasing the pace 
and scale of treatment activities within low- and middle-elevation pine and mixed conifer forest landscapes.

1. Introduction

Wildfire is an important natural disturbance globally (Bowman et al., 
2010). For millions of years, fire has shaped the distribution and evo-
lution of life on earth (Keeley and Pausas, 2022). In recent decades, 
components of the fire regime (e.g., the timing, size, or severity) have 
begun to change rapidly in some systems. For example, in western 
United States forests, the annual area burned at high severity has 
increased by eightfold since 1985 (Parks and Abatzoglou, 2020) and 
increasing high-severity patch size has been homogenizing forests 
(Singleton et al., 2021; Cova et al., 2023). The cause of changing fire 
regimes is context-specific and therefore depends on the system in 
question (Jones et al., 2022a). But the primary drivers typically include 

a combination of warming and drying climate conditions (Abatzoglou 
and Williams, 2016; Juang et al., 2022) as well as past and ongoing fire 
exclusion resulting in homogenous conditions with unnaturally large 
accumulations of fuel (Koontz et al., 2020; Francis et al., 2023; Kreider 
et al., 2024).

In historically fuel-limited systems, such as seasonally dry forests, 
land managers can produce more desirable fire behavior by reducing 
fuel loads in forests through restoration activities including prescribed 
burning, mechanical thinning, and unplanned wildfires managed for 
resource benefit (Agee and Skinner, 2005). Most fires in these systems 
burn under a range of moderate weather conditions and, under these 
conditions, fuels reduction activities appear to change fire behaviors 
within treatment boundaries; but uncertainty exists about their 
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influence beyond the treatment boundary and under the most extreme 
weather conditions (McKinney et al., 2022). For example, strong 
ambient winds as well as fire-induced internal winds that are produced 
during many large fire events are thought to override potential effects of 
forest fuels reduction (Coen et al., 2018). If fuels reduction does not alter 
fire severity, then there would be little justification for land manage-
ment agencies to invest billions of dollars annually in management ac-
tions that are ineffective.

A great deal of research has been conducted on fuels treatment 
effectiveness (Prichard et al., 2020). Fuels treatments are predicted to be 
effective from first principles (i.e., theoretical models based on physics) 
(Agee, 1993; Agee and Skinner, 2005), and numerous 
empirically-informed simulation studies have been conducted demon-
strating expected reductions in fire severity resulting from fuels reduc-
tion (Ager et al., 2010; Collins et al., 2011; Hurteau, 2017; Jones et al., 
2022b; Remy et al., 2024). Empirical evidence from small-scale and/or 
distributed controlled forest experiments and observational studies also 
exist with similar conclusions (Stephens and Moghaddas, 2005; Ste-
phens et al., 2009; North and Hurteau, 2011). Considerably less evi-
dence exists showing the effect of fuels reduction in reducing burn 
severity in real, large landscape fires (Johnson et al., 2019), in part 
because the implementation of landscape-scale fuels reduction treat-
ments is limited by various constraints (Collins et al., 2010), which does 
little to combat the perception that fuels reduction treatments are 

ineffective to influence real fire behavior during the most severe 
weather conditions.

One of the challenges with adequately evaluating the effects of fuels 
reduction on fire severity is a scale-dependency issue. As the spatial 
extent of a fire increases, the proportion treated must increase to cause a 
reduction in fire severity (McKinney et al., 2022). Unfortunately, in 
many landscapes, treatment sizes are generally quite small relative to 
the area burned by wildfire (North et al., 2021). In untreated areas, 
climate-driven mortality causing live tree biomass to become dead fuels 
and increasing temperature and atmospheric dryness are making these 
fuels more available to burn (Abatzoglou and Williams, 2016; Goodwin 
et al., 2020, 2021; Juang et al., 2022). When substantial fuel is available 
for combustion, wildfires can generate their own weather because of 
significant energy release (Stephens et al., 2018, 2022). In these types of 
conditions, small, treated areas are unlikely to modify fire behavior 
significantly. This scale issue excepted, the evidence that does exist for 
fuels reduction efficacy is promising (Prichard et al., 2010; Lydersen 
et al., 2017), but more empirical evidence regarding how 
landscape-scale fuels treatments influence real fire behavior and 
post-fire effects is needed.

Here, we evaluated the association between previously implemented 
fuels reduction and forest restoration activities (including prescribed fire 
and managed wildfire), previous wildland fire entries, and fire severity 
in the 2022 Black Fire that occurred in southwestern New Mexico. Over 

Fig. 1. Patterns of burn severity, previous treatment, and burn progression in the 2022 Black Fire, which burned in southwestern New Mexico, USA.

G.M. Jones et al.                                                                                                                                                                                                                                Forest Ecology and Management 580 (2025) 122540 

2 



54 % of the > 131,000 ha burned area had been previously treated, 
providing an ideal opportunity to examine the influence of extensive 
past treatments on fire behavior in a ‘gigafire’ (Linley et al., 2022). Our 
central question was: “How did previous landscape-scale fuels treat-
ments influence burn severity patterns in a large fire event?” To answer 
this question, we conducted two analyses examining the influence of 
previous treatments on fire effects at different scales. First, we con-
ducted a landscape-scale random forest analysis that examined the 
relative importance of a suite of predictor variables on severe fire extent, 
including previous treatments, vegetation lifeform, and fire weather. 
Second, we conducted a fine-scale fire progression analysis, examining 
the way fire severity changed as it progressed along transects that 
eventually intersected previous treatments, and compared those obser-
vations to fire behavior along control transects (those that did not 
intersect previous treatments). Together, these analyses provide a 
multi-scale view of the effects of extensive fuels reduction treatments on 
fire severity in a large wildfire event.

2. Methods

2.1. Study area

Our study was located on the Gila National Forest in southwestern 
New Mexico, USA, which has a rich history of prescribed fire and 
managed fire used for resource benefit (Hunter et al., 2011). The 
vegetation within the fire perimeter was primarily ponderosa pine (Pinus 
ponderosa) forest, woodlands, and savannahs (~36 %) and 
pinyon-juniper woodland (~32 %) composed of pinyon pine (Pinus 
edulis) and various species in the genus Juniperus spp. including one-seed 
(J. monosperma) and alligator (J. deppeana). Mixed-conifer forest con-
taining Douglas-fir (Pseudotsuga menziesii) and white fir (Abies concolor) 
with a suite of other species was also present (~14 %). Gambel oak 
(Quercus gambelii), shrub live oak (Q. turbinella), and gray oak (Q. grisea) 
was also commonly associated with some conifer assemblages, espe-
cially ponderosa pines.

The Black Fire ignited on 13 May 2022 along Forest Road 150 
approximately 54 km northeast of Silver City, NM, and continued to 
expand through mid-June. Most of the fire progression occurred be-
tween 13 May and 14 June with the largest single-day progressions 
occurring on 16 May (15,123 ha) and 17 May (8659 ha). At the time of 
the Black Fire ignition, mean wind speeds were the highest and average 

relative humidity was the lowest that had been observed in at least the 
previous decade (Beaverhead Weather Station), resulting in red flag fire 
danger warnings. The Black Fire eventually burned 131,577 ha of 
forestland, making it the second largest fire in state history, only sur-
passed by the 2022 Hermit’s Peak/Calf Canyon Fire that burned 
138,188 ha. Although large, only ~4 % of the total area in the Black Fire 
perimeter burned at high severity (>75 % canopy mortality). Twenty- 
one percent of the area within the perimeter either was unchanged or 
burned at very low severity (0–5 % canopy mortality); 61 % burned at 
low severity (5–25 % canopy mortality), and 14 % burned at moderate 
severity (25–75 % canopy mortality) (Fig. 1).

2.2. Geospatial data

We produced two primary geospatial layers for the 2022 Black Fire 
that were used in our analyses: a 4-class burn severity raster product and 
a shapefile that merged all areas that had previously received treatments 
and/or experienced wildfires. We developed the 4-class burn severity 
raster via a process currently used by United States Forest Service 
wildland fire personnel based on techniques developed by Miller and 
Thode (2007) and the Monitoring Trends in Burn Severity program 
(MTBS) (Eidenshink et al., 2007). Briefly, we acquired pre- and post-fire 
images using Landsat Collection 2 in Google Earth Engine (Gorelick 
et al., 2017) (pre-fire image: LC08_034037_20210907; post-fire image: 
LC09_034037_20230905) with a spatial resolution of 30 m × 30 m. We 
processed the images using the relativized dNBR (RdNBR) methodology, 
which removes the biasing effect of the pre-fire condition (Miller et al., 
2009). To create a four-class fire severity raster, we clipped the resulting 
RdNBR layer to three broad vegetation types (forest, pinyon/juniper, 
and riparian/grassland) and, within each vegetation type, indepen-
dently calibrated the RdNBR to match observed fire severity (Miller and 
Thode, 2007; Miller et al., 2009). Calibration thresholds were identified 
in collaboration form Gila National Forest wildland fire staff (M. Corn-
well and J. Kirker, personal communication). Rapid Assessment of Vege-
tation Condition after Wildfire (RAVG) and Burned Area Emergency 
Response (BAER) geospatial data was also used as auxiliary data to 
inform calibration and corroboration of observed fire severity from local 
wildland fire professionals.

We identified previous prescribed fire, wildland fire for resource 
benefit, and mechanical treatments within the 2022 Black Fire perim-
eter using the United States Forest Service’s Forest Activity Tracking 

Table 1 
Geospatial predictor variables included in the landscape-scale random forest analysis.

Variable Description Units Resolution Source

Previous 
treatments

Areas that experienced prescribed fire or wildfire managed for resource 
benefit between 2000 and 2021.

ha N/A USDA Forest Service 
Southwestern Region

Actual evapo- 
transpiration

Average monthly combination of transpiration from vegetation and 
evaporation from soil surfaces.

mm 1 km USGS Data Portal

Fuel temperature Maximum daily fuel temperature reading embedded within a standard pine 
dowel, fully exposed to sunlight, above a representative fuel bed.

◦F Attributed to daily burn 
progression polygon

Beaverhead Remote Automatic 
Weather Station (RAWS)

Relative humidity Maximum daily percent ratio of the actual amount of water vapor in the air 
to the amount of water vapor required for saturation at existing temperature.

% Attributed to daily burn 
progression polygon

Beaverhead Remote Automatic 
Weather Station (RAWS)

Air temperature Maximum daily temperature measured in the ambient air surrounding 
weather station instrumentation

◦F Attributed to daily burn 
progression polygon

Beaverhead Remote Automatic 
Weather Station (RAWS)

Wind gust Maximum daily wind speed measured at a height of six feet above the ground mph Attributed to daily burn 
progression polygon

Beaverhead Remote Automatic 
Weather Station (RAWS)

Climatic water 
deficit

Average monthly climatic water deficit derived using a one-dimensional soil 
water balance model

mm 0.1 DD TerraClimate

Drought index The average monthly Palmer Drought Severity Index, which combines 
temperature and precipitation data to estimate relative dryness

unitless 0.01 DD TerraClimate

Hardwood forest Proportion of area dominated by hardwood forest defined by existing 
vegetation type physiognomy

Proportion 30 m LANDFIRE

Conifer forest Proportion of area dominated by conifer forest defined by existing vegetation 
type physiognomy

Proportion 30 m LANDFIRE

Shrubland Proportion of area dominated by shrubland defined by existing vegetation 
type physiognomy

Proportion 30 m LANDFIRE

Grassland Proportion of area dominated by grassland defined by existing vegetation 
type physiognomy

Proportion 30 m LANDFIRE
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System (FACTS) geospatial treatment database of record. Previous 
wildland fire perimeters were identified using the United States Forest 
Service’s institutional wildland fire perimeter geospatial layer. All data 
is exclusive to National Forest System lands and are publicly available 
(https://data.fs.usda.gov/geodata/edw/datasets.php). Both the FACTS 
and the wildland fire datasets were filtered to include years 2000 
through 2021 due to longevity of wildland fire treatments and data 
consistency (reporting in FACTS was inconsistent before the year 2000). 
Note that FACTS data only applies to National Forest System lands, so 
we did not analyze burn severity or treatment impacts in a small section 
in the southeastern part of the Black Fire that occurred on private land 
(Fig. 1).

The FACTS database was further filtered by “Activity Code” to 
identify treatments that physically impacted fuels and/or forest struc-
ture (https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd5 
39041.pdf). Activity Code for mechanical treatments was filtered with 
a range between and including 4101 and 4242; these codes include all 
treatments that remove trees from the landscape. Fire treatments were 
filtered using Activity Codes 1111, 1113, 1117, and 1119 (1111 and 
1113 are prescribed fire, 1117 and 1119 are wildfire for resource 
benefit). In total, prescribed fire treatments covered 19,407 ha, me-
chanical treatment covered 0 ha, and wildfire (both unmanaged fire and 
wildfire managed for resource benefit) covered 69,179 ha. Because of 
the spatial overlap of treatments, the sum of treatment acres exceeds the 
actual total treatment footprint. Accounting for overlap, the total 
treatment footprint was 71,690 ha of the 131,577 ha Black Fire foot-
print (54.5 %). We grouped prescribed, managed, and unmanaged fire 
into a single category for our analysis. Our view is it may not matter 
physically or ecologically which type of fire burned; it all represents fire 

on the same topography, through the same fuels, under similar 
conditions.

2.3. Landscape-scale analysis

We conducted an analysis using random forest (Breiman, 2001) to 
evaluate the landscape-scale drivers of burn severity in the 2022 Black 
Fire at multiple spatial scales. Constrained to the perimeter of the Black 
Fire, we generated 1000 points with random x-y coordinates. Then, we 
generated buffered circles surrounding those 1000 points with varying 
radii: 500 m, 1000 m, 2000 m, and 4000 m. Within each buffered circle 
at each scale, we summarized a suite of response and predictor variables. 
We computed two response variables: the proportion of each circle that 
burned at high severity, and the proportion of each circle that burned at 
moderate-or-high severity. Then, in addition to the previously treated 
area, we summarized 11 vegetation and fire-weather variables to 
include in the random forest model as predictors. These variables 
included actual evapotranspiration, fuel temperature, relative humidity, 
maximum air temperature, maximum wind gust, climatic water deficit, 
drought index, as well as the proportion of each circle containing conifer 
forest, hardwood forest, grassland, and shrubland (Table 1).

We fitted one model containing all 12 predictor variables at each 
spatial scale and for each of the two response variables, and compared 
the relative importance of each variable by computing the increase in 
the percent mean squared error when the model was re-fitted without 
including the focal variable. Then, we examined partial dependence 
plots of a subset of variables with high relative importance to interpret 
the form and direction of the relationship between the predictor and the 
response variables. We conducted the random forest model fitting using 

Fig. 2. Results from the landscape-scale random forest analysis evaluating drivers of burn severity patterns. (a) Variable importance plot for the analysis using high 
severity fire as the response variable. (b) Partial dependence plot showing the functional relationship between previously treated area and the probability of high 
severity fire. (c) Variable importance plot for the analysis using moderate-to-high severity fire as the response variable. (d) Partial dependence plot showing the 
functional relationship between previously treated area and the probability of moderate-to-high severity fire.
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the R package ‘randomForest’ version 4.7–1.1 (Liaw and Wiener, 2002) 
and examined partial dependence plots using the R package ‘pdp’ 
version 0.8.1 (Greenwell, 2022).

2.4. Fine-scale progression analysis

To understand how fire severity changes when an advancing fire 
encounters a previously treated area, we conducted a fine-scale fire 
progression analysis. We generated radial lines from the fire origin to the 
fire perimeter separated by 1◦ using ArcGIS Pro (Lydersen et al., 2017). 
Along each line, we randomly generated 120 transects beginning in each 
of the three burn severity classes (120 in low, 120 in moderate, and 120 
in high). In each burn severity class, we generated 60 ‘treatment’ and 60 
‘control’ transects. Treatment transects consisted of 10 sequential points 
separated by 50 m occurring in the direction of fire spread, with the first 
5 points occurring outside of a treated area and the second 5 points 
occurring inside of a treated area. Control transects were similar, con-
sisting of 10 sequential points occurring in the direction of fire spread, 
except they never intersected a previously treated area. We visually 
assessed each transect to ensure that it occurred along the direction of 
fire spread as estimated from fire progression maps provided by the 
USDA Forest Service Southwestern Region (Fig. 1).

We developed a generalized linear mixed-effects model to analyze 
the fire progression dataset. The model was of the form: 

yik = β0 + β1Typeik + β2Treatedik + τk 

where yik was the value of the Poisson-distributed response variable at a 
given point i along transect k. We selected a Poisson distribution with a 
log-link because the response variable, burn severity, was measured as 
RdNBR that took on discrete integer values from 0 to 842; β0 was the 

model intercept; β1was the coefficient for the variable Typeik, which took 
on a value of 1 for all points along treatment transects, and a value of 
0 for all points along control transects; β2 was the coefficient for the 
variable Treatedik, which took a value of 1 for points along treatment 
transects that actually occurred within a treatment (i.e., the second 5 
points along the transect) and 0 for all other points in both treatment and 
control transects; finally, τk was a random effect for transect to account 
for spatial dependence. We fitted separate models for each burn severity 
class using the R package ‘lme4’ version 1.1–35.5 (Bates et al. 2015) and 
used package ‘segmented’ version 2.1–0 (Muggeo, 2024) to identify 
possible break points in partial dependence plots.

3. Results

In the landscape-scale analysis, previously treated area was consis-
tently a top predictor across the four spatial scales examined. Previously 
treated areas were the most important predictor of high-severity fire 
across all scales (Fig. 2a). Partial dependence plots indicated that the 
predicted proportion of area burned at high-severity decreased by an 
average of 51 % (from 0.053 to 0.026) as the proportion of an area 
treated increased from 0 to 1, with strong non-linearity in this effect 
(Fig. 2b). Break point analysis suggested that the strongest decreases in 
fire severity occurred once the treated proportion reached a value of 
0.57, 0.50, 0.38, and 0.42 for the 500 m, 1000 m, 2000 m, and 4000 m 
scales, respectively (Fig. 2b). The random forest models fit relatively 
well to the data, with the variance explained (R2) ranging from 0.606 to 
0.915 depending on the severity and scale examined, with R2 generally 
increasing at larger spatial scales (Table 2).

When predicting the proportion burned at either moderate or high- 
severity, previous treated area was the most important predictor at the 
500 m and 1000 m spatial scales, and was the third most important 
predictor at the 2000 m and 4000 m spatial scales (behind relative hu-
midity and drought index; Fig. 2c). Partial dependence plots indicated 
that the predicted proportion of area burned at moderate- and high- 
severity decreased by an average of 35 % (from 0.23 to 0.15) as the 
proportion of an area treated increased from 0 to 1 (Fig. 2d). As with the 
high-severity model, non-linearity was apparent, and break point anal-
ysis suggested that the strongest decreases in fire severity occurred once 
the treated proportion reached a value of 0.56, 0.47, 0.35, and 0.39 for 
the 500 m, 1000 m, 2000 m, and 4000 m scales, respectively (Fig. 2d).

In the fine-scale progression analysis, fire severity decreased signif-
icantly when transects encountered previously treated areas, regardless 
of the initial severity (Fig. 3, Fig. 4). Burn severity tended to be slightly 

Table 2 
Model performance metrics from the landscape-scale random forest analysis.

Scale

Response variable Metric 500 m 1000 m 2000 m 4000 m

High-severity fire Variance 
explained (R2)

0.606 0.698 0.812 0.915

Mean out-of-bag 
error

0.0019 0.0012 0.0006 0.0002

Moderate/high- 
severity fire

Variance 
explained (R2)

0.656 0.734 0.824 0.903

Mean out-of-bag 
error

0.0105 0.0070 0.0039 0.0017

Fig. 3. Predicted burn severity (RdNBR) across treatment and control transects. Each panel shows the results from models where the transects began in different burn 
severities (high, moderate, and low).
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higher in treatment transects compared to control transects across all 
severities (β1; Table 3). However, within treatment transects, burn 
severity decreased by 21–55 % when a transect encountered a previ-
ously treated area, depending on the initial severity (Table 3). When a 
transect started in high-severity, mean RdNBR decreased by 55 % (from 
395 to 178) once it encountered treatment (β2, high = ¡0.796, 95 % 
confidence interval [− 0.812, − 0.780]). When a transect started in 
moderate-severity, mean RdNBR decreased by 46 % (from 232 to 125) 
once it encountered a treatment (β2, moderate = ¡0.621, [− 0.638, 
− 0.603]). Finally, when a transect started in low-severity, mean RdNBR 
decreased by 21 % (from 67 to 53) once it encountered a treatment (β2, 

low = ¡0.235, [− 0.250, − 0.220]).

4. Discussion

We showed that fire-treated areas – areas experiencing prescribed 
fire, wildfire managed for resource benefit, and other wildfires – were 
effective in reducing observed burn severity in a real, large fire event, 
the 2022 Black Fire, in the southwestern United States. The range of fuel 
conditions that existed on the landscape prior to the Black Fire, pro-
duced by many previous fires, made such a positive outcome possible. At 
a landscape scale, patterns of both moderate and high severity fire were 
most strongly controlled by previously treated area, having stronger 
influence than a suite of fire weather and vegetation predictors. At a fine 
scale, when the fire front encountered a previously treated area, the 
observed burn severity decreased, regardless of whether the fire was 
burning at high, moderate, or low intensity at the time of encounter. As 
government agencies in the United States continue to invest billions of 
dollars in an attempt to increase the pace and scale of forest restoration 
and fuels reduction treatments in vulnerable forests (USDA Forest Ser-
vice, 2022), our findings provide further support for the effectiveness of 
such treatments in real, large landscape fire events.

Although relatively rare, other studies have documented effective-
ness of fuels reduction and forest restoration in real, large fire events, 
and our results align with previous findings quite well in dry conifer 
forest systems. Lydersen et al. (2017) examined the extent to which 
previous mechanical thinning and prescribed fire prescriptions influ-
enced the severity of the 2013 Rim Fire (104,131 ha) in the central Si-
erra Nevada, CA, USA. Like our study, Lydersen et al. (2017) showed 
that previous treatments were an important driver of landscape-scale 
burn severity and that treatment effects were scale-dependent in a 
similar manner that we showed in Fig. 2b. In our study, treatments 
remained the most important predictor of burn severity across all scales 
(Fig. 2a), whereas Lydersen et al. (2017) showed that fire-line intensity 
outweighed previously treated areas in terms of predictive importance 
at smaller scales. Moreover, Lydersen et al. (2017) showed that burn 
severity was reduced when the fire encountered a previously treated 
area in a progression analysis like ours. In the North Cascades, USA, 
Prichard and Kennedy (2014) showed that even under extreme weather 
conditions experienced during the 2006 Tripod Complex fires (70, 
894 ha), fuels reduction treatments – and particularly those that 
included burning of surface fuels – were effective in reducing observed 
burn severity. In Arizona, USA, Waltz et al. (2014) showed that burn 
severity in the 2011 Wallow Fire (217,740 ha) was significantly lower in 
treated areas, and high-severity patch sizes exceeded those observed in 
historical reference conditions in untreated forest stands. In the 2014 
San Juan Fire in Arizona, the distance that high-severity effects persisted 
into treated areas varied as a function of post-treatment canopy cover 
(Johnson et al., 2019). Numerous other examples have been summa-
rized elsewhere (Prichard et al., 2020).

Fuels reduction and forest restoration treatments are effective in dry 
conifer forest systems because these systems were historically fuel 
limited (Krawchuk and Moritz, 2011). While planned fuels reduction 
activities can act to limit available fuels, wildfires were the primary 
disturbance that limited available fuels historically and continue to play 
a primary role in the self-regulation of these systems (Parks et al., 2015; 

Fig. 4. Example of the fine-scale progression transects, showing treatment 
transects (blue dots) encountering a previously treated area (blue hatched 
area). In the top panel, the reduction in burn severity is apparent after the 
transects intersect with previously treated areas. The bottom panel shows the 
transects in relation to the burn progression map. The burn severity color 
gradient in this figure is the same as that shown in Fig. 1.

Table 3 
Model coefficients and uncertainty from the fine-scale fire progression analysis. 
SE = standard error; LCL = lower 95% confidence limit; UCL = upper 95% 
confidence limit.

 Coefficient SE LCL UCL

High severity    
Intercept 5.547 0.067 5.413 5.682
Transect type 0.284 0.101 0.083 0.486
Treated − 0.796 0.008 − 0.812 − 0.780
Moderate severity    
Intercept 5.127 0.065 4.997 5.256
Transect type 0.173 0.099 − 0.023 0.369
Treated − 0.621 0.009 − 0.638 − 0.603
Low severity    
Intercept 3.651 0.183 3.290 4.011
Transect type 0.196 0.258 − 0.313 0.703
Treated − 0.235 0.007 − 0.250 − 0.220
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Cansler et al., 2022). For example, Parks et al. (2014) showed that in two 
large United States wilderness areas, including the Aldo Leopold Wil-
derness (coinciding with a portion of our study area), fires that burned 
through previously burned areas tended to experience lower fire 
severity. Previous fires are likely one reason why the 2022 Black Fire 
experienced such spatially limited high-severity fire (only ~4 % of the 
total burned area, or just over ~5000 ha). According to data from the 
USDA Forest Service Southwestern Region and the Monitoring Trends in 
Burn Severity program, at least 48 fires of at least 400 ha in size burned 
within the Black Fire perimeter between 1984 and 2021, which likely 
acted to limit fuels and curb high-severity fire extent (Fig. 5a). Compare 
this with the similarly sized 2022 Hermit’s Peak/Calf Canyon (HPCC) 
complex, which burned in northern New Mexico at the same time as the 
Black Fire, also under extreme weather conditions. The HPCC complex 
experienced only 9 fires over this same period, and only a handful of 
small fuels reduction treatments, and it burned predominately at 
high-severity (Fig. 5b). Further analysis is necessary to understand 
drivers of burn severity in the HPCC complex, but it appears that lack of 
previous fires may be one potential driver of increased burn severity.

Our study comes with two primary caveats that readers should 
consider when interpreting our results. First, we pooled all treatment 
types including prescribed burns and managed wildfire into a single 
‘treatment’ category, and thus we could not estimate the effectiveness of 
each treatment type individually. Our rationale for doing this was that 
some individual treatment types were too rare on the landscape to 
obtain reliable estimates of their individual effects, so pooling them at 
least allowed us to estimate an overall effect. Second, we did not make 
any efforts to quantify a potential time-since-treatment effect. The 

effectiveness of fuels reduction treatments has been shown to decline 
over time as vegetation recovers (Finney et al., 2007; Holden et al., 
2010; Parks et al., 2014), and thus older treatments may be less effective 
at reducing subsequent burn severity compared to newer ones. How-
ever, we pooled all previous treatments into a single treatment group for 
similar reasons as we described above for treatment type; estimating 
different effects for time-since-treatment may have resulted in weakened 
inference because of smaller group sample sizes and inherent uncer-
tainty in treatment dates in our database.

There are several management implications for forest restoration and 
fuels reduction in the southwestern United States that emerge from our 
study. First, application of prescribed fire and wildland fire for resource 
benefit across large and heterogenous combinations of time and space 
can reduce observed burn severity and create landscapes that are more 
resilient to fire disturbance. Second, multiple fire treatments can reduce 
risk to forest, watershed, and other ecological values, and facilitate the 
ability of wildland fire to perform ecological functions within the his-
torical range of variation. Third, prescribed fire treatments and wildfires 
managed for resource benefit are effective at reducing stand-replacing 
fire effects, even under extreme fire weather conditions. Finally, the 
scale of treatments (area treated) is important to reducing extreme fire 
behavior in extreme fire weather conditions; the larger the area that is 
treated, the larger the expected reductions in burn severity. Our results 
suggest that increasing the pace and scale of treatments in southwestern 
US dry forests is expected to reduce high severity patch size and sub-
sequent undesirable social and ecological effects. Further understanding 
of fire-environment interactions (fuels, weather, topography) that lead 
to desirable outcomes, particularly those that involve mechanical 

Fig. 5. Comparison of the 2022 Black Fire (left) and the 2022 Hermit’s Peak/Calf Canyon (HPCC) fires. The area that eventually burned in the Black Fire had 
experienced at least 48 previous fires (including both unmanaged wildfire and wildfire managed for resource benefit) since 1984, likely resulting in lower fuel 
accumulation and, ultimately, lower overall burn severity. In contrast, the area that eventually burned in the HPCC fire had experienced only 9 previous fires over the 
same time period. The burn severity color gradient in this figure is the same as that shown in Fig. 1.
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treatments, in other large fire events will be critical for facilitating 
successful wildland fire management.
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