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Abstract  Invasions by non-native plant species 
after fire can negatively affect important ecosystem 
services and lead to invasion-fire cycles that further 
degrade ecosystems. The relationship between fire 
and plant invasion is complex, and the risk of inva-
sion varies greatly between functional types and 
across geographic scales. Here, we examined pat-
terns and predictors of non-native plant invasion 
following fire across the western United States. We 

specifically analyzed how the abundance of non-
native plants after fire was related to fire character-
istics and environmental conditions, such as climate, 
soil, and topography, in 26,729 vegetation plots from 
government networks and individual studies. Non-
native plant cover was higher in plots measured after 
wildfires compared to prescribed burns or unburned 
plots. The post-fire cover of non-native species varied 
by plant functional type, and only the cover of short-
lived (i.e., annual and biennial) forbs and short-lived 
C3 grasses was significantly higher in burned plots 
compared to unburned plots. Cool-season short-lived 
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grasses composed most of the non-native post-fire 
vegetation, with cheatgrass (Bromus tectorum) being 
the most recorded species in the dataset. Climate 
variables were the most influential predictors of the 
cover of non-native short-lived grasses and forbs after 
fires, with invasion being more common in areas with 
drier summers and a higher proportion of yearly pre-
cipitation falling in October through March. Models 
using future projected climate for mid (2041–2070) 
and end (2071–2100) of century showed a potential 
for increasing post-fire invasion risk at higher eleva-
tions and latitudes. These findings highlight priorities 
for mitigation, monitoring, and restoration efforts to 
reduce post-fire plant invasion risk across the western 
United States.

Keywords  Bromus tectorum · Climate change · 
Disturbance · Exotic annual grasses · Invasive plants · 
Management · Wildfire

Introduction

Invasions by non-native plant species following fire 
can have significant and lasting impacts on ecosystem 
services such as biodiversity, soil stability, and for-
age production (Hobbs and Huenneke 1992; Coates 
et  al. 2016; Nagy et  al. 2021). Non-native species 
may also alter trajectories in early successional com-
munities, lead to the exclusion of native early seral 
species (Kulmatiski 2006), and have negative impacts 
on other biotic interactions (Mack et al. 2000; Coates 
et  al. 2016). Non-native plants often invade native 
ecosystems after disturbances such as fire remove 

established vegetation, which can increase the avail-
ability of limiting resources and benefit invasive spe-
cies establishment (Davis et al. 2000; Davis and Pel-
sor 2001; Shea and Chesson 2002; Daehler 2003). 
In some ecosystems, non-native plant invasions can 
also increase fire risk (Fusco et  al. 2019), and cre-
ate a positive invasion-fire feedback that can result in 
alternative, less diverse ecosystem states (D’Antonio 
and Vitousek 1992; Brooks et al. 2004; Davies et al. 
2012).

Fire and invasion are both complex processes that 
are influenced by environmental conditions (climate, 
soil, topography), human disturbance (grazing pres-
sure, proximity to roads and trails, and the overall 
intensity of disturbance), fire regime characteristics 
(past fire regime, departure from fire regime), and 
biological factors (pre-fire plant community charac-
teristics, non-native propagule pressure, and potential 
invader characteristics). All these factors interact to 
influence how “invasible” a given ecosystem is after 
a fire (Keeley et al. 2003, 2011; Merriam et al. 2006; 
Perkins et al. 2011; Ellsworth et al. 2016; Williamson 
et al. 2020). For example, some shrubland ecosystems 
in western USA historically had long fire return inter-
vals prior to European settlement, but now experience 
more frequent fires (Bukowski and Baker 2013), and 
this departure from past conditions can allow new 
species to invade (Keeley et  al. 2011). Fire severity 
may also influence invasion, as higher severity may 
lead to greater disturbance, which can increase avail-
able resources for invasive plants (Fornwalt et  al. 
2010; Miller et al. 2010; Sherrill and Romme 2012). 
Invasion can increase landscape-scale fire spread 
and severity, which has been linked to tree mortality, 
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a shift to non-forest vegetation types, and in some 
cases increase the potential for invasion (Coop et al. 
2020; Kerns et  al. 2020; Woolman et  al. 2022; Tor-
torelli et al. 2023). However, to our knowledge there 
has been no research examining how fire severity may 
relate to plant invasions across large climate gradients 
and multiple ecosystem types.

To date, most of the negative impacts associated 
with the invasion of non-native plants after fire in 
North America have been in hotter, drier regions of 
the western part of the USA (D’Antonio and Vitousek 
1992; Brooks 1999; Fusco et  al. 2019; Wilder et  al. 
2021). Invasion by non-native plants can increase fine 
fuel loads and fuel continuity in historically sparsely 
vegetated and fuel-limited systems. Coupled with hot-
ter and drier weather, invasion can increase the extent 
and frequency of both subsequent large destruc-
tive wildfires and subsequent invasions via a posi-
tive feedback (Brooks et al. 2004; Fusco et al. 2019; 
Wilder et  al. 2021). Prescribed fire, which is often 
used to achieve restoration goals (Ditomaso et  al. 
2006; Calo et al. 2012), can similarly exacerbate plant 
invasions in some cases (Keeley et al. 2007; Sherrill 
and Romme 2012; Roundy et al. 2018). However, not 
all fires, or fire types, result in invasion by non-native 
species (Alba et al. 2015), some invasive species can 
reduce fire spread (Stevens and Beckage 2009), and 
not all non-native species become abundant after fires 
(Byers et al. 2002; Smith et al. 2008).

The non-native species that are successful after 
fires in semi-arid ecosystems are often fast-growing 
annuals that establish quickly and grow early after 
disturbances (Wolkovich and Cleland 2011), preempt-
ing newly available soil resources and outcompeting 
slower-establishing native species with more conserv-
ative growth strategies (Davis et  al. 2000; Montes-
inos 2022). A changing climate in conjunction with 
an increase in the size and severity of fires at higher 
elevations and in more northern regions may lead to 
an increased risk of post-fire plant invasion in for-
merly resistant or resilient ecosystems (Concilio et al. 
2013; Taylor et  al. 2014; Lembrechts et  al. 2016; 
Kerns et al. 2020). Increasingly, the risk of invasion 
by non-native grasses after disturbances at higher 
altitudes and in forested ecosystems has been recog-
nized (Kerns et al. 2020; Smith et al. 2022). Forested, 
formerly invasion-resistant regions may not return to 
their historical forested state after high severity wild-
fires with climate change (Coop et al. 2020; Woolman 

et  al. 2022), and this can lead to increased poten-
tial for an even broader footprint of plant invasions 
(Franklin et al. 2006). Land managers are concerned 
with the higher potential for invasion risks associated 
with climate change and mega-fires (Williams 2013; 
USDA 2022), and thus need information to focus lim-
ited resources on managing potential invasions after 
large fires across broad spatial scales.

To deal with threats posed by increasing wildfire 
activity and intensity under warmer and drier condi-
tions, managers and government officials are directing 
large amounts of money for prescribed fires and fuels 
treatments (see, e.g., USDA 2022). Consequentially, 
understanding the impacts of wildfires and prescribed 
fires on non-native plants at the landscape-scale is a 
high priority. Given the large number of interacting 
factors that can potentially determine post-fire inva-
sion risk, it is difficult to accurately predict areas that 
are at the greatest risk of invasion after fires, both 
now and in the future (Beaury et al. 2020). To address 
the uncertainty associated with the interconnected 
risks of plant invasion and fire, we performed a quan-
titative data synthesis to explore how the abundance 
of non-native plants after fire varies in relation to fire 
characteristics and environmental conditions such 
as soils, topography, and climate, using vegetation 
data collected on the ground from across the western 
USA. We synthesized this large dataset to examine 
which types of invasive plants are the most successful 
invaders after fires and identify where post-fire plant 
invasions are most common.

We hypothesized the following: (1) Non-
native  plant   species will differ in their successful 
establishment after fires based on their functional 
type and life history. Specifically, we hypothesized 
that non-native short-lived (annual and biennial) her-
baceous species would be more abundant in burned 
plots compared to non-native long-lived herba-
ceous and woody species, because short-lived her-
baceous species may respond to an increase in lim-
ited resources following disturbances more rapidly 
than slower growing plant species (Melgoza et  al. 
1990; Davis et  al. 2000). (2) Non-native plant func-
tional types that increase in cover following fires 
will be more abundant following wildfires compared 
with prescribed fires and will be most abundant in 
severely burned areas and areas that historically had 
long fire return intervals prior to European coloniza-
tion of North America. We hypothesized this because 
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greater levels of disturbance and greater departures 
from historical conditions may increase invasion risk 
(Davis et al. 2000; Keeley et al. 2011). (3) Abundance 
of functional types that increase after fires will vary 
across climatic gradients. Specifically, we hypoth-
esized that non-native plant functional types that ben-
efit from fire will also be more abundant in regions 
with greater summer drought, and a greater propor-
tion of yearly precipitation falling outside the tradi-
tional growing season, because quick growing and 
winter-annual non-native plants may more effectively 
capture limited pulses of resources after disturbances 
like fire and outcompete natives in these conditions 
(Melgoza et  al. 1990; Davis et  al. 2000; Prevéy and 
Seastedt 2014; Bradley et  al. 2018). Strong correla-
tions between climate and post-fire invasion may also 
indicate that invasion risk could change in the future 
as the climate changes.

Materials and methods

We compiled a large dataset of non-native plant abun-
dance, fire characteristics, and environmental predic-
tors across the western United States. We focused 
our analyses on vegetation plots in the Western USA, 
west of − 100 longitude, as there were too few vegeta-
tion plots measured after fires in the eastern part of 
the country to examine broad-scale patterns there. For 
these analyses, we combined data from two national-
scale datasets of plant species cover data compiled 
from federal, state, county, and other sources: the 
Standardized Plant Community with Introduced Sta-
tus Database (SPCIS; Petri et al. 2022) and the Public 
LANDFIRE Reference Database from the Landscape 
Fire and Resource Management Planning Tools pro-
gram (LANDFIRE 2016a, b). Three of the main con-
tributors of plot-level vegetation data to these data-
bases were the Bureau of Land Management (BLM) 
Inventory and monitoring program, the National 
Park Service (NPS) Inventory and Monitoring plots, 
and U.S. Department of Agriculture (USDA) Forest 
Service (USFS) Forest Inventory and Analysis Pro-
gram. The LANDFIRE reference database comes 
from county, state, and federal government sources 
that contributed plant cover data to the LANDFIRE 
project (LANDFIRE 2016a, b). To supplement this 
dataset, we added plot-level data from numerous tar-
geted post-fire vegetation studies in the western USA 

(Firmage and Ronsani 2021a, b, Table  S1). These 
studies measured the absolute percent foliar cover of 
plant species within plots, or frequency of all plant 
species located at intervals along transects (hereafter, 
“plots”). We then used fire perimeter data from the 
combined wildland fire datasets for the United States 
and certain territories from 1800s to 2020 (Welty and 
Jeffries 2021), and fire perimeter and severity data 
from the Monitoring Trends in Burn Severity (MTBS) 
database, from 1980 through 2020 (www.​mtbs.​gov/) 
to identify all plots that were measured up to 50 years 
following a fire and quantify the number of times 
plots had burned prior to measurement. We identified 
the historical mean fire return interval for all fires and 
historical fire regimes prior to European colonization 
of North America for each plot using derived layers 
from LANDFIRE (LANDFIRE 2016b). The resulting 
combined dataset includes cover data from 237,799 
vegetation plots located west of − 100 longitude, 
measured between 1970 and 2020 (Fig. 1). Of these 
plots, 26,729 were burned from 1 to 50 years prior to 
vegetation measurements (Fig.  1). This dataset con-
sists of plots measured at a single point in time; and 
thus results shown here infer impacts via a space-for-
time substitution (Sofaer et al. 2018).

We summed the percent cover of non-native plants 
by plant functional type and photosynthetic pathway 
in each plot across the combined dataset, using the 
following categories: woody (trees and shrubs), short-
lived forbs, long-lived forbs, C3 short-lived grasses, 
C3 long-lived grasses, and C4 grasses. There were 
very few non-native C4 grasses present in the data-
set, so the short-lived and long-lived C4 categories 
were combined to allow for statistical comparisons of 
cover between burned and unburned plots. Vines were 
included in the forb categories. ‘Short-lived’ indi-
cates annuals and biennials, and ‘long-lived’ refers to 
perennial plants. Non-native status and lifeform cat-
egories are based on the native status, duration, and 
growth habit information from the USDA Plants data-
base (USDA and NRCS 2022) and photosynthetic 
pathway information was derived from Waller and 
Lewis (1979), Belmonte and de Agrasar (2002) and 
Bruhl and Wilson (2007). Plots with summed cover 
values for any functional type that totaled over 100% 
were converted to 100%.

To address our first hypothesis that some plant 
functional types would be more abundant after 
fire than others, we fit separate models with each 

http://www.mtbs.gov/
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non-native functional type’s plot-level cumulative 
percent cover (hereafter ‘cover’) as response variables 
and burn status (burned or unburned) as the predic-
tor variable. To examine our second hypothesis that 
abundance of non-native plant functional types fol-
lowing fires will depend on fire type and severity, we 
separately analyzed how fire type of the most recent 
fire (wildfire or prescribed fire), number of times 
burned over the past 50  years, time since the most 
recent fire, severity of the most recent fire based on 
burn severity mosaics from the MTBS database, his-
toric fire return interval, and fire regime influenced 
the percent cover of non-native plants. Plots with fire 
types listed in MTBS as ‘unknown’ or ‘wildland fire 
use’ were grouped with the wildfire category. MTBS 
thematic burn severity classes were binned into three 
categories prior to analysis: ‘Low’, ‘Medium’, and 

‘High’, based on changes in the Normalized Burn 
Ratio from LANDSAT images taken from before and 
after fires (Eidenshink et  al. 2007). We performed 
separate analyses of thematic burn severity for plots 
located in forested versus grassland or shrubland 
land cover types according to the North American 
Environmental Atlas (NALCMS 2015). Fire regime 
analysis was restricted to categories with over 1000 
observations. We tested for significant effects of 
all above variables using generalized linear mixed-
effects models (glmms) in the statistical program R 
(R Core Team 2022). To accommodate the unbal-
anced nature of the data and the many plots where 
no non-native plants were found, we fit models with 
tweedie distributions using the glmmTMB package 
(Brooks et  al. 2017). Tweedie distributions are gen-
eralized power law distributions that have been used 

Fig. 1   A Locations of all plots in the dataset. Brown points 
indicate plots that burned up to 50  years prior to vegetation 
measurements (n = 26,729), and green points indicate plots 
that were not identified as having burned within 50  years of 
measurements (n = 211,070). The size of points relates to the 
percent foliar cover of non-native plant species recorded at that 

plot. B Average cover of all non-native plant species in plots 
burned up to 50  years prior to measurement, and unburned 
plots, ± standard error. Map tiles for base map by Stamen 
Design, under CC BY 4.0. Data by OpenStreetMap, under 
ODbL
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to model continuous data with many zeros (Dunn 
et  al. 2018), and here provided a better fit and con-
vergence than other distributions for our statistical 
models. For each analysis we also fit mixed-effects 
models only using data for each functional type in 
plots where those functional types were recorded 
(i.e., we removed plots with zero values for that 
specific functional type). We did this to account for 
potential biases in the way plot-level vegetation data 
were gathered. For example, if data on certain types 
of species were not measured in a plot, this would 
result in erroneous zero values. Additionally, a lack 
of cover of a non-native plant species may result from 
a lack of seed sources in an area, and not necessarily 
be indicative of responses to fire. Ecoregion, dataset, 
and survey year were considered random variables in 
models. Ecoregion categories were based on Level I 
Ecoregions of North America (Omernik and Griffith 
2014), with the ‘North American Deserts’ category 
spilt into ‘Warm deserts’ and ‘Cold deserts’ to distrib-
ute the number of burned plots more evenly between 
regions (Fig.  S1). We calculated pseudo R2 values 
for mixed effects models with continuous predictor 
variables using the DHARMa package (Hartig 2022), 
and we performed Tukey’s post hoc tests for multi-
ple comparisons for models with categorical predictor 
variables (historic fire return interval and fire regime) 
using the multcomp package in R (Hothorn et  al. 
2008). Model assumptions, including lack of disper-
sion and normality of residuals, were checked visu-
ally in quantile–quantile plots, histograms of residu-
als, and plots of residuals versus fitted values.

To address our third hypothesis and examine how 
climate and other environmental factors influenced 
the post-fire invasion risk of functional types that 
benefited from fire, we modeled the abundance of 
different functional types using random forest mod-
els across the western USA. Random foress models 
were chosen for this portion of the analysis because 
they are robust to unbalanced, continuous data with 
non-normal distributions (Cutler et al. 2007; Mi et al. 
2017), and have been found to perform well for spa-
tial predictions of ecological phenomena (Evans et al. 
2011). We used plot-level cover of non-native func-
tional types in burned plots as response variables 
and included ecologically relevant bioclimatic vari-
ables derived from ClimateNA normals from 1981 to 
2010 (Wang et  al. 2016) as potential predictor vari-
ables. We also derived several precipitation variables 

that we hypothesized would be important predictors 
of non-native plant success. Specifically, we calcu-
lated the total precipitation received over the growing 
season (April–September). We also determined the 
ratio of yearly precipitation received in winter (Octo-
ber–March), March, and spring (March–May). Our 
reasoning behind this is that some non-native species 
may be more successful in regions that receive more 
precipitation in winter or early spring and less over 
the traditional growing season (Prevéy and Seastedt 
2014). We included a predictor variable calculating 
distance from roads and trails, as they can be vectors 
for the introduction and spread of invasive plant spe-
cies (Gelbard and Belnap 2003). We also considered 
soil variables (% sand, % clay, bulk density, pH), and 
geography (slope, aspect, and continuous heat-insola-
tion load index), as gradients in soils and topography 
are often associated with where plants grow on the 
landscape (Table 1). Preliminary correlation analyses 
were conducted to identify predictor variables that 
were strongly correlated with each other. We removed 
predictor variables that were correlated at > than 0.7 
(Dormann et  al. 2013), retaining the set of uncorre-
lated variables that had the most ecological relevance 
(Table  1). We also tested the effect of each predic-
tor variable on non-native cover separately using 
glmms as described above to ensure the final selected 
variables were also those that explained a significant 
amount of variance in post-fire non-native plant cover 
individually. We performed ecoregion specific analy-
ses for our six generalized ecoregions to test whether 
important predictors of post-fire invasion varied by 
ecoregion. We compared results to those from ran-
dom forests trained on spatially thinned datasets that 
retained data from only 10,000 plots selected to be 
maximally distant from each other, and we compared 
results to random forest models only including data 
from plots where plant functional groups were pre-
sent. We also compared results for random forests 
trained with data only from the most common non-
native C3 short-lived grass in the dataset, cheatgrass 
(Bromus tectorum), and random forests trained with 
all non-native C3 short-lived grasses except cheat-
grass to examine how these results reflect its influ-
ence and whether other annual grasses show similar 
responses. We fit random forest models using the ran-
domForest package (Liaw and Wiener 2002) in R, and 
assessed accuracy using Pearson correlations between 
training and out of bag samples. We assessed spatial 
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Table 1   All potential predictor variables considered for random forest models of post-fire non-native plant abundance across the 
western United States

Variable abbreviation Variable name Calculations/units Source

AHM Annual heat-moisture index (MAT + 10)/(MAP/1000)) Wang et al. (2016)
April precip April precipitation mm Wang et al. (2016)
August precip August precipitation mm Wang et al. (2016)
BD Bulk density of soil kg/cubic-meter Ramcharan et al. (2018)
bFFP The day of the year on which the frost-

free period (FFP) begins
DOY Wang et al. (2016)

CHILI Continuous Heat-Load Index, based 
on latitude, aspect, and slope

Index between 0 and 1 USGS (2019)

Clay % Percent clay content in top 5 cm of soil % Ramcharan et al. (2018)
CMD Hargreaves climatic moisture deficit mm Wang et al. (2016)
DD_0 degree-days below 0 °C Number of days Wang et al. (2016)
eFFP The day of the year on which FFP ends DOY Wang et al. (2016)
EMT Extreme minimum temperature over 

30 years
°C Wang et al. (2016)

Eref Hargreaves reference evaporation mm Wang et al. (2016)
EXT Extreme maximum temperature over 

30 years
°C Wang et al. (2016)

FFP Frost-free period Number of days Wang et al. (2016)
FRI Historic fire regime interval Mean number of years between fires LANDFIRE (2016a, b)
GSP April to September precipitation 

(mm)
(mm), Calculated from Climate NA 

monthly data
Wang et al. (2016)

July precip July precipitation mm Wang et al. (2016)
June precip June precipitation mm Wang et al. (2016)
MAP mean annual precipitation mm Wang et al. (2016)
MAR Mean annual solar radiation (MJ m‐2 d‐1) Wang et al. (2016)
Mar p March precipitation mm Wang et al. (2016)
MAT Mean annual temperature °C Wang et al. (2016)
May precip May precipitation mm Wang et al. (2016)
MCMT Mean coldest month temperature °C Wang et al. (2016)
MSP May to September precipitation mm Wang et al. (2016)
MWMT Mean warmest month temperature °C Wang et al. (2016)
MWP October to March precipitation mm Wang et al. (2016)
Nitrogen Nitrogen content % weight Ramcharan et al. (2018)
Northness Northness Cosine (Aspect in radians) USGS (2019)
PAS Precipitation as snow between August 

in the previous year and July in the 
current year

mm Wang et al. (2016)

pH Ph of soil pH Ramcharan et al. (2018)
Remote Remoteness from roads and trails Cost surface based on travel times to 

nearest road or trail
US Census (2018)

Sand % Percent sand in top 5 cm of soil % Ramcharan et al. (2018)
Sept. precip September precipitation Wang et al. (2016)
SHM summer heat-moisture index ((MWMT)/(MSP/1000)) Wang et al. (2016)
Slope angle Slope degrees ° USGS (2019)
SOC Soil organic content g/kg Ramcharan et al. (2018)
TD Temperature difference between MWMT 

and MCMT, or continentality
Temperature difference in °C Wang et al. (2016)
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autocorrelation of model results by visual inspection 
of residuals across plot locations in the western USA 
to ensure there were no spatial patterns in areas of 
over or under prediction.

To project potential climate-driven changes in 
post-fire invasion risk of functional types that ben-
efited from fire, we used future projections of cli-
mate variables across the western USA to map pre-
dicted changes in post-fire risk for mid (2041–2070) 
and end (2071–2100) of century under a medium 
(SSP245) and a high (SSP585) greenhouse gas emis-
sion scenarios (Eyring et al. 2016; Wang et al. 2016). 
The SSP245 scenario is a medium radiative forcing 
scenario that predicts an additional radiative forcing 
of 4.5 W m2 by 2100, and the SSP585 scenario rep-
resents the upper boundary of the range of climate 
change scenarios and predicts an additional radiative 
forcing of 8.5  W/m2 by the end of the twenty-first 
century (Eyring et  al. 2016). We used downscaled 
future climate projections from a CMIP6 13-model 
ensemble (Adaptwest Project 2022; Wang et al. 2016, 
Mahony et  al.  2022) to identify regions where cli-
matic conditions matching those predicting current 
post-fire invasion risk may exist in the future.

Results

Non-native plants were present in only 12% (28,391) 
of the 237,799 plots in the dataset. There were 667 
non-native species identified across all plots in this 
dataset (Table S2). By non-native functional type, C3 
short-lived grasses were present in 19,067 plots, C3 
long-lived grasses were present in 6479 plots, short-
lived forbs were present in 15,541 plots, long-lived 
forbs were present in 4873 plots, C4 grasses were pre-
sent in 429 plots, and shrubs and trees were present in 
1256 plots (Fig. S2).

Overall, burned plots had higher cover (z = 47.13, 
p < 0.0001) and species richness (z = 46.10, 
p < 0.0001) of non-native plants compared with 

unburned plots (Table  2, Fig.  1). C3 short-lived 
grasses comprised most of the non-native post-fire 
vegetation (Fig. 2), and the C3 short-lived grass Bro-
mus tectorum was the most common and abundant 
species in the dataset (Table  3, Table  S2). Post-fire 
cover of non-native species varied by plant functional 
type, and only cover of non-native C3 short-lived 
grasses and short-lived forbs were significantly higher 
in burned plots compared to unburned plots when 
including all plots, as well as only the subset of plots 
where the non-native functional types were present 
(all p < 0.0001, Table 2, Fig. 2).

Eleven percent (26,729) of the 237,799 plots in the 
dataset had burned within 50 years prior to measure-
ment. Wildfire burned 25,661 plots; prescribed fires 
burned 1067 plots. Cover of non-native C3 short-
lived grasses and short-lived forbs was higher follow-
ing wildfires compared with prescribed burns, both in 
analyses including zero cover values, and when zero 
values were excluded (all p > 0.05, Table 4, Fig. 3).

We were able to identify the total number of times 
a plot was burned prior to measurement for 18,306 of 
the 26,729 burned plots. Of these, 8932 of the plots 
burned once prior to measurement, 4828 burned 
twice, 2463 burned three times, 1161 burned four 
times, and 922 plots had burned 5 or more times 
prior to measurement. The number of times a plot 
had burned prior to measurement was weakly cor-
related with the abundance of C3 short-lived grasses 
and short-lived forbs (all p < 0.06; pseudo R2 = 0.01, 
Table 4).

We identified the MTBS burn severity data class 
of the most recent fire for a subset of 6244 plots in the 
western USA that had burned after 1984 in fires larger 
than 1000 acres; 3831 of these plots were binned in 
the ‘low’ fire severity category, 1577 in the ‘medium’ 
category, and 836 plots in the ‘high’ category. There 
was no trend for higher cover of C3 short-lived non-
native grasses or forbs with higher fire severity across 
all ecosystem types, or within either the shrubland/
grassland or forested ecosystems (all p > 0.07, pseudo 

Table 1   (continued)

Variable abbreviation Variable name Calculations/units Source

WPR % of annual precipitation received in 
Winter (Oct.-March)

%, Calculated from Climate NA 
monthly data

Wang et al. (2016)

Variables in bold are the uncorrelated (< 0.07) predictors selected for final random forest models based on correlation analyses. Full 
citations for sources can be found in the Citations
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R2 < 0.15, Table  4). There was also no trend for a 
decrease in non-native C3 short-lived grass or short-
lived forb cover based on the amount of time between 
when a fire occurred and when a plot was measured 
(all p > 0.07, pseudo R2 < 0.009, Table 4). Both short-
lived non-native functional types were more abundant 
in plots that historically experienced longer fire return 
intervals (all p < 0.03, Fig.  4), and were most abun-
dant in fire regime category IV-A, which historically 
had fire return intervals from 36 to 100  years and 
experienced replacement fires greater than 66.7% of 
the time (all p < 0.05, Fig. 4, Table 4).

Random forest models that included data from all 
burned plots throughout the western USA showed 
that severity of drought, growing season precipitation, 
and the ratio of yearly precipitation received in winter 
were the most important variables predicting cover 
of the two functional types that benefited from fire 
in this dataset: non-native C3 short-lived grasses and 
non-native short-lived forbs (Tables 5 and 6, Fig. 5). 
These variables were also highly significant predictors 
of post-fire cover in single-variable glmms (Tables S3 
and S4). The order of importance of the top two pre-
dictor variables did not differ between non-native C3 
short-lived grasses and non-native short-lived forbs. 
The order of importance differed somewhat for ran-
dom forests including only plots where lifeforms were 

present, and models only including data from specific 
ecoregions (Tables  S5 and S6). However, a climate 
variable was always ranked as the most important for 
each model type, with summer precipitation being the 
most important variable in most models (Tables  S5 
and S6). For non-native C3 short-lived grasses, non-
native short-lived forbs, only Bromus tectorum, and 
all C3 short-lived grasses excluding Bromus tecto-
rum, higher projected post-fire cover was predicted in 
semi-arid basins and steppes across the western USA 
for the current time period (Fig. 5). Areas projected 
to currently have higher post-fire cover of B. tectorum 
differed slightly from those projected to have higher 
cover of short-lived forbs or other C3 short-lived 
grasses, with higher predicted cover for B. tectorum 
overall, but relatively higher projected post-fire cover 
of short-lived forbs and other C3 grasses in the cen-
tral and Mojave basins of California, and in the north-
ern plains (Fig. 5).

Future predictions of invasion risk based on 
current relationships between post-fire cover of 
non-native C3 short-lived grasses and short-lived 
forbs and important environmental variables indicate 
that the risk of invasion may increase at higher eleva-
tions and latitudes, and in northern portions of the 
short-grass prairie (Figs. 6 and 7). Future projections 
show increased probabilities for more severe summer 

Table 2   Estimates of fixed effects of fire status on non-native cover and species richness of the non-native plant functional types, for 
analyses with and without plots recording 0% cover of the functional type

Non-native functional type Fixed effect Model type Estimate se z p # Obs

Total non-native cover Burned All plots 1.57 0.03 48.21 < 0.00001 237,799
Total non-native cover Burned Non-zero plots 0.60 0.02 27.49 < 0.00001 28,391
Non-native sp. richness Burned All plots 0.85 0.02 46.35 < 0.00001 237,799
Non-native sp. richness Burned Non-zero plots 0.21 0.01 19.76 < 0.00001 28,391
c3 sl grass Burned All plots 1.64 0.04 46.15 < 0.00001 237,799
c3 sl grass Burned Non-zero plots 0.57 0.02 24.67 < 0.00001 19,067
c3 ll grass Burned All plots 1.86 0.07 25.00 < 0.00001 237,799
c3 ll grass Burned Non-zero plots − 0.02 0.05 − 0.52 0.60 6479
c4 grass Burned All plots 0.53 0.56 0.95 0.34 237,799
c4 grass Burned Non-zero plots − 0.18 0.28 − 0.64 0.52 429
sl forb Burned All plots 1.54 0.04 38.19 < 0.00001 237,799
sl forb Burned Non-zero plots 0.21 0.03 8.13 < 0.00001 15,541
ll forb Burned All plots 1.09 0.08 12.95 < 0.00001 237,799
ll forb Burned Non-zero plots − 0.01 0.06 − 0.22 0.83 4873
Woody Burned All plots 0.74 0.34 2.20 0.06 237,799
Woody Burned Non-zero plots − 0.22 0.16 − 1.36 0.17 1256
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drought, as well as an increase in the percentage of 
total precipitation occurring in winter and early 
spring and falling as rain rather than snow. The higher 
SSP585 scenario projects a greater risk of invasion by 
mid-century with further increases in post-fire inva-
sion risk at higher elevations and latitudes by the end 
of century, and the lower SSP245 scenario shows a 
more moderate increase in post-fire invasion risk that 
stabilizes by end of the century (Figs. 6 and 7).

Discussion

Short-lived non-native plants were more abundant 
after wildfires than in unburned plots throughout 
the western USA, as predicted, which is in line with 
results from studies at smaller spatial scales (Alba 
et  al. 2015; Williamson et  al. 2020; Sofaer et  al. 
2022). Time since fire and fire severity did not sig-
nificantly correlate with cover of non-native spe-
cies, although satellite-derived measurements of fire 
severity may not be highly accurate across forest and 
shrubland ecosystems (Zhu et al. 2006; Storey et al. 
2021). Short-lived non-native species were more 
abundant in burned areas with historically longer fire 
return intervals. Departure from historic fire regimes 
may create a pathway for invasion, as the plant spe-
cies present in these ecosystems were adapted to dis-
turbance regimes prior to European settlement, and 
the recent departure from these regimes may allow 
colonization by new species better evolved to deal 
with a higher disturbance frequency (Keeley et  al. 
2011; Brooks and Chambers 2011). This interpreta-
tion is reinforced by the relatively higher abundance 
of these non-natives following wildfire than pre-
scribed fire (which is generally low severity in west-
ern forests), though we did not observe an effect of 
wildfire severity across the entire dataset.

In our dataset, short-lived C3 grasses were the 
most common non-native plants to establish after 
fires, with Bromus tectorum being the most abun-
dant of these. Post-fire invasion of these non-native 
short-lived grasses was more likely in areas with low 
summer precipitation, higher annual heat-to-moisture 
ratios, and a higher proportion of yearly precipita-
tion falling in winter and early spring. Currently, 
short-lived non-native C3 grasses are most invasive 
in semi-arid regions of western North America after 
fires. In these ecosystems, disturbance and departure 
from historical fire regimes (e.g. atypically severe or 
frequent fire) are important factors allowing for plant 
invasion (Lembrechts et al. 2016). Non-native species 
that can escape harsh conditions temporally (short-
lived) and grow quickly (non-woody) can potentially 
thrive after disturbances, whereas the native species 
in these ecosystems often have a more conservative 
strategy to resist and survive harsh conditions (e.g. 
long-lived, slow growing, small leaves, thick cuticles, 
woody). In contrast, in moderate, wetter climates, 
many native species have evolved to grow quickly 

Fig. 2   Mean percent cover of non-native plant functional 
types in unburned plots and plots in the western United States 
that had burned in all fire types up to 50 years prior to meas-
urement, ± standard error. Asterisks indicate significant dif-
ferences in mean cover by burn status. A Means of all cover 
response variables from all plots measured, including plots 
with 0% cover for the variable. B Means of all cover response 
variables only including plots where the target lifeform was 
present. Note the change in values on the y-axis. Maps of cover 
for each lifeform, along with sample sizes, are shown in Fig. 
S2
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with abundant resources, and thus post-fire native 
competition and invasion resistance is higher (Cham-
bers et al. 2019; Bekris et al. 2021). Higher cover of 
native species, and specifically native perennial spe-
cies, has been shown to provide resistance to winter-
annual and short-lived non-native plant invasions 
(Chambers et al. 2007; McGlone et al. 2011; Reisner 
et al. 2013; Williamson et al. 2020; Anthony and Ger-
mino 2023). As this synthesis shows, and is backed 

by other research, the importance of climate and com-
petition is especially apparent after disturbances (Tay-
lor et al. 2014; Brummer et al. 2016).

The non-native functional types that increased 
after fire, short-lived forbs and C3 grasses, were both 
strongly correlated with climate, and the regions 
where invasions following fire were predicted to be 
most likely were similar for both functional types. 
Furthermore, even though our results for short-lived 

Table 3   The six most 
frequently encountered non-
native species by functional 
group, the number of plots 
the species were identified 
in across the dataset, and 
the average percent cover of 
each species in plots where 
they were present

A full list of all non-native 
species found in the dataset 
is in Table S2

Lifeform Species # of Plots % Cover

Short-lived C3 grasses Bromus tectorum 14,213 18.6
Bromus arvensis 2144 11.77
Bromus rubens 1707 4.73
Bromus hordeaceus 1371 6.28
Bromus diandrus 1206 4.9
Bromus madritensis 804 2.63

Long-lived C3 grasses Poa pratensis 2213 8.71
Agropyron cristatum 2113 14.37
Thinopyrum intermedium 1447 7.59
Poa bulbosa 897 9.38
Bromus inermis 717 9.27
Phleum pratense 512 4.37

C4 grasses Cynodon dactylon 87 13.97
Eragrostis lehmanniana 87 8.09
Pennisetum setaceum 86 2.97
Eragrostis cilianensis 68 1.97
Echinochloa crus-galli 44 1.76
Setaria viridis 33 4.13

Short-lived forbs Sisymbrium altissimum 2062 4.73
Alyssum desertorum 1951 6.53
Tragopogon dubius 1820 0.83
Erodium cicutarium 1753 4.48
Lactuca serriola 1427 1.37
Melilotus officinalis 1262 6.27

Long-lived forbs Taraxacum officinale 2353 1.85
Cirsium arvense 573 3.24
Rumex crispus 359 0.9
Hypochaeris radicata 301 1.86
Rumex acetosella 248 2.13
Marrubium vulgare 218 1.08

Shrubs and trees Tamarix spp. 292 10.38
Nicotiana glauca 189 0.46
Rubus armeniacus 92 13.62
Elaeagnus angustifolia 92 16.74
Genista monspessulana 91 6.36
Rubus bifrons 66 5.34
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C3 grasses were likely driven by relationships impor-
tant for the dominant invasive B. tectorum, the spa-
tial predictions from models trained on other C3 
grasses excluding B. tectorum were similar to those 
from models trained on only B. tectorum cover 
data. These results highlight that semi-arid regions 

receiving the majority of  precipitation in the winter 
and early spring are susceptible to invasion after dis-
turbances by short-lived non-native species that can 
germinate and grow quickly outside the historical 
growing season. Species traits are often the focus of 
studies of invasions (e.g. Drenovsky et al. 2012; Funk 

Table 4   Estimates of fixed effects of fire type (unburned, 
wildfire, prescribed fire), the number of times a plot was 
burned in the last 50  years, the number of years since a fire 
occurred, the monitoring trends in burn severity (MTBS) fire 

severity classification, fire regime on percent cover of non-
native functional types that increased following fires: short-
lived grasses and short-lived forbs

Non-native functional type Response values included Fixed effect Estimate se z p # obs

Short-lived grasses All Fire type (wildfire) 1.67 0.03 46.26 < 0.00001 25,661
Short-lived grasses All Fire type (Rx fire) 0.97 0.16 6.22 < 0.00001 1067
Short-lived grasses Non-zero Fire type (wildfire) 0.59 0.02 25.2 < 0.00001 5373
Short-lived grasses Non-zero Fire type (Rx fire) − 0.001 0.11 − 0.02 0.99 193
Short-lived grasses All # times burned 0.16 0.05 3.01 0.002 18,306
Short-lived grasses Non-zero # times burned 0.17 0.04 4.18 0.05 4610
Short-lived grasses All Time since fire 0.004 0.001 2.97 0.003 18,306
Short-lived grasses Non-zero Time since fire 0.002 0.001 1.67 0.09 5596
Short-lived grasses All Fire severity − 0.05 0.03 − 1.74 0.08 6244
Short-lived grasses Non-zero Fire severity 0.04 0.02 1.36 0.17 3667
Short-lived grasses All—forest Fire severity − 0.50 0.42 − 1.19 0.23 799
Short-lived grasses All—grass/shrubland Fire severity − 0.06 0.03 − 1.79 0.07 5345
Short-lived grasses All FRI (36–100) 0.03 0.05 2.1 0.04 9881
Short-lived grasses All FRI (200+) 0.16 0.04 3.3 0.0009 8710
Short-lived grasses All Fire regime (I-C) − 1.83 0.09 *4.36 < 0.00001 3206
Short-lived grasses All Fire regime (III-A) − 1.39 0.29 − 3.55 0.0004 2303
Short-lived grasses All Fire regime (IV-A) 2.79 0.32 8.47 < 0.00001 7578
Short-lived grasses All Fire regime (IV-B) 0.57 0.08 1.7 0.08 6509
Short-lived forbs All Fire type (wildfire) 1.56 0.04 38.53 < 0.00001 25,661
Short-lived forbs All Fire type (Rx fire) 0.62 0.18 3.40 0.0007 1067
Short-lived forbs Non-zero Fire type (wildfire) 0.22 0.03 8.3 < 0.00001 4463
Short-lived forbs Non-zero Fire type (Rx fire) 0.005 0.12 0.41 0.96 143
Short-lived forbs All # times burned 0.08 0.04 1.99 0.05 18,306
Short-lived forbs Non-zero # times burned 0.04 0.03 1.37 0.001 2681
Short-lived forbs All Time since fire − 0.005 0.002 − 2.378 0.017, 0.35 18,306
Short-lived forbs Non-zero Time since fire − 0.0002 0.002 − 0.113 0.91 4639
Short-lived forbs All Fire severity 0.06 0.05 1.20 0.23 6244
Short-lived forbs Non-zero Fire severity 0.12 0.04 3.22 0.06 2788
Short-lived forbs All—forest Fire severity − 0.23 0.36 − 0.65 0.52 799
Short-lived forbs All—grass/shrubland Fire severity 0.01 0.05 0.27 0.78 5345
Short-lived forbs All FRI (36–100) 0.12 0.06 1.97 0.05 9881
Short-lived forbs All FRI (200 +) 0.31 0.06 5.2 < 0.00001 8710
Short-lived forbs All Fire regime (I-C) − 0.18 0.03 − 1.51 0.13 3206
Short-lived forbs All Fire regime (III-A) − 0.14 0.01 − 1.06 0.29 2303
Short-lived forbs All Fire regime (IV-A) 0.53 0.01 4.88 < 0.00001 7578
Short-lived forbs All Fire regime (IV-B) 0.54 0.01 0.492 0.62 6509
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et  al. 2017), but abiotic factors also play an impor-
tant role in determining where species become inva-
sive (Davis et  al. 2000). In regions with temporally 
limited resources, there may be a greater fluctuation 
in these resources after disturbances compared to 
regions with more moderate climates, and thus there 

is a greater opportunity for invasion, perhaps regard-
less of the specific invader characteristics themselves 
(Davis et  al. 2000). Highlighting the environmental 
conditions that influence ecosystem invasibility after 
disturbances can help focus management efforts to 
regions at the greatest risk following disturbance and 
with climate change.

Climate-driven changes in the timing of precipita-
tion and drought may alter the locations where post-
fire plant invasions for the species included in this 
dataset are most likely and most damaging (Bradley 
2009; Taylor et al. 2014; Bradley et al. 2018). There 
is some evidence that these changes may already be 
occurring, as long-term monitoring plots from range-
lands in western USA show an increase in the cover 
of annual plants across all regions over time, includ-
ing in forested mountains and in the Northern Great 
Plains (Kleinhesselink et al. 2023). Future changes in 
invasion risk may impact decisions about prescribed 
fires, thinning operations, herbicide use, restora-
tion planting, and where to increase post-disturbance 
monitoring for non-natives in higher elevation eco-
systems (Brooks et  al. 2004; Merriam et  al. 2006; 
Keeley et al. 2011). Our results also highlight regions 
that may see a decrease in invasion risk by short-lived 
non-native C3 grasses and forbs in the future based 
on climate projections. Areas that are projected to see 
decreased risk of invasion are those that are projected 
to become very arid in the future, and these regions 
may become more resistant to invasion as there will 
be fewer resource pulses to enable non-native colo-
nization following disturbances, potentially favoring 
the more conservative strategies of some native spe-
cies (Zefferman et al. 2015). These results need to be 
interpreted with caution, but they are supported by 
other similar findings for individual non-native spe-
cies (Bradley and Wilcove 2009; Allen and Brad-
ley 2016). Targeting areas with a reduced projected 
invasion risk for restoration treatments could result 
in greater restoration success as non-natives become 
less climatically suited and thus less competitive with 
restored native plantings (Pilliod et al. 2021).

There are many critical caveats that should be con-
sidered when interpreting the results of our data syn-
thesis. Perhaps most importantly, this dataset consists 
of temporally and spatially uneven samples consisting 
of a single post-fire measurement per plot; and thus 
results shown here infer impacts via a space-for-time 
substitution (Sofaer et  al. 2018). For example, we 

Fig. 3   A Mean percent cover of fire-increasing non-native 
lifeforms in unburned plots (n = 211,071), plots that burned in 
a prescribed fire (n = 1067), and plots that burned in a wildfire 
(n = 25,152) up to 50  years prior to measurement, ± standard 
error, including plots with 0% cover for the variable. B Means 
of all cover response variables only including plots where the 
target lifeform was present. Note the change in values on the 
y-axis. Different letters indicate significant differences in mean 
cover by fire type at p < 0.05
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found that time since fire did not impact non-native 
plant cover. However, these data are from only a sin-
gle point in time at each site, so we cannot accurately 
examine site-level cover changes over time. We also 
found no relationships between non-native cover and 
fire severity. Fire severity measurements for grass and 
shrubland ecosystems have been shown to be highly 
inaccurate (Zhu et al. 2006; Storey et al. 2021), and 
site-level analyses have shown that higher fire sever-
ity increases prevalence of some invaders in forests 
(Tortorelli et al. 2020). Additionally, the importance 
of climate variables as drivers of invasion risk likely 
results from the large scale of this analysis as well. 
Topography, soils, past management, and grazing 
history would likely become more important predic-
tors of where non-native plants are abundant at finer 
scales (Pearson and Dawson 2003; Ellsworth et  al. 
2016). Additional data from long-term monitoring 
plots that are repeatedly measured over time, evenly 
dispersed across the landscape, and paired with accu-
rate on-the-ground measures of fire severity across a 
range of habitat types will help refine predictions of 
post-fire invasion risk.

We did not examine native vegetation here, so we 
cannot directly infer impacts of competition, biotic 
resistance, or other plant interactions. This would 
have only been correlative with this data collection, 
as these data were taken at a single point in time, and 
time-series before and after fires would be needed for 
such analyses. We attempted to limit the influence of 
pre-existing vegetation in our analyses by only includ-
ing “recently” burned (i.e., disturbed) plots. However, 
this type of analysis means we are unable to accu-
rately identify how pre-fire plant community compo-
sition or vegetation type influences post-fire invasion 
patterns. There were also large data gaps that likely 
hinder the accurate assessment of post-fire invasion 
risk across the western USA. For example, we have 
very few data points from burned plots in southwest-
ern hot desert ecosystems, where non-native long-
lived grass species may be becoming more prevalent 
after fires (Brooks and Chambers 2011; Wilder et al. 
2021). Additional monitoring data from burned areas 
in the southwestern region, as well as other under-
sampled regions, will help provide more balanced and 
accurate predictions of post-fire invasion risk across 
the west. This synthesis is helpful in that it highlights 
regions where more data are needed.

Another important caveat with these analyses is 
that we sum the cover of all non-native species within 
a functional type together prior to evaluating how 
cover is influenced by environmental variables. This 
is partially due to the scarcity of data for any single 
species besides Bromus tectorum across the entirety 
of the western USA, but also stems from the goal to 
look at broad-scale patterns in invasion rather than 
replicate species-level distribution models and maps 
(e.g. Bradley 2009; Bradley et al. 2018; Sofaer et al. 
2022). Individual species will respond in different 
ways to combinations of disturbance and climate 
(Tortorelli et  al. 2020; Applestein and Germino 

Fig. 4   Average percent cover of functional types that 
increased following fire in burned plots. A non-native C3 
short-lived grasses and B non-native short-lived forbs in 
binned categories based on LANDFIRE historic fire return 
intervals, 0–35  years (n = 7702), 36–100  years (n = 9881), 
and 200 years or greater (n = 8710). Average percent cover of 
C non-native C3 short-lived grasses and D non-native short-
lived forbs by LANDFIRE fire regime classification: I-B 
is categorized as having percent replacement fire less than 
66.7%, and a fire return interval of 6–15 years (n = 3114), I-C 
has 66.7% replacement fire, fire return interval of 16–35 years 
(n = 3206), III-A has less than 80% replacement fire, fire 
return interval of  36–100  years (n = 2303), IV-A has greater 
than 80% replacement fire, fire return interval of 36–100 years 
(n = 7578), IV-B has greater than 66.7% replacement fire, fire 
return interval of  101–200  years (n = 6509). Different letters 
denote significant differences at p < 0.05

◂

Table 5   Random forest model results showing R2 and root-mean-squared-error (RSME) values for predictions from out-of-bag data 
not in the bootstrapped sample (oob), as well for the bootstrapped data (sample)

Model R2 oob R2 sample RSME oob RSME sample

Short-lived C3 grasses 0.44 0.89 11.63 5.80
Short-lived forbs 0.19 0.83 4.43 2.39
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2022), and thus grouping multiple species together 
for analyses could obfuscate species-level patterns. 
In sagebrush steppe, Ventenata dubia has been shown 
to occupy a distinct niche from Bromus tectorum and 
Taeniatherum caput-medusae (Applestein and Ger-
mino 2022). Additionally, fire may not play as large 
of a role in enhancing invasion risk of specific species 
of short-lived non-natives compared to others (Rid-
der et al. 2021). For example, Ventenata dubia is cur-
rently a more successful invader at higher elevations 
than Bromus tectorum, and our combined climate 
predictions for all short-lived grasses may mask more 
rapid advances to higher elevations of Ventenata 
dubia with a changing climate (Tortorelli et al. 2020).

This synthesis is the first to pull extensively from 
multiple datasets to examine patterns in post-fire plant 
invasion risk at a subcontinental scale. We show that 
non-native invasion after fire in the western USA is 
overwhelmingly caused by short-lived plant species, 
and they are most abundant after fires in regions with 
dry summers and historically long fire return intervals. 
Our analyses clearly indicate a ’climate space’ where 
non-native plant invasion is more likely after fire, spe-
cifically in regions with higher summer drought. This 
’climate space’ may change as the climate changes and 
summer droughts become more severe, so risk of post-
fire plant invasions may change as well. The spatial pro-
jections of the results presented here can help identify 
hotspots where invasions are the most common follow-
ing fire now and in the future. These spatial predictions 
provide an important step to help reduce the risk of 

Table 6   Importance values for the final set of predictor varia-
bles from random forest models of post-fire abundance of non-
native C3 short-lived grasses and short-lived forbs

Importance values show how much including the variable in 
the model increases model accuracy. Variables with higher 
importance values have greater predictive power. Descriptions 
of variable abbreviations can be found in Table 1

Lifeform Variable Permutation 
importance

C3 short-lived grasses
April-Sept. precipita-

tion
17.80

Winter precipitation 
ratio

15.50

Precipitation as snow 15.16
Annual heat-moisture 

index
13.78

Mean annual radiation 8.65
Historic fire return 

interval
8.24

Remoteness 8.24
% Sand 6.79
% Clay 6.70
CHILI 6.02
Northness 5.84

Short-lived forbs
April-Sept. precipita-

tion
8.04

Winter precipitation 
ratio

6.89

Annual heat-moisture 
index

6.12

Precipitation as snow 5.97
MAR 3.36
Historic fire return 

interval
3.17

% Clay 3.09
% Sand 2.82
Remoteness 2.57
CHILI 1.73
Northness 1.66
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Fig. 5   Projections of post-fire cover of non-native A C3 short-
lived grasses, B short-lived forbs, C only Bromus tectorum, 
and D all other C3 short-lived grasses except Bromus tectorum 

based on random forests using bioclimatic data for the current 
(1981–2010) time period. Base map from Esri and its licen-
sors, copyright 2022
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Fig. 6   Projected changes in post-fire abundance of non-native 
C3 short-lived grasses for A 2041–2070 under a medium emis-
sions climate scenario SSP245, B 2041–2070 under the high-

est emissions climate scenario SSP285, C 2071–2100 under 
SSP545, and D 2071–2100 under SSP585. Base map from Esri 
and its licensors, copyright 2022
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Fig. 7   Projected changes in post-fire abundance of non-native 
short-lived forbs for A 2041–2070 under a medium emis-
sions climate scenario SSP245, B 2041–2070 under the high-

est emissions climate scenario SSP285, C 2071–2100 under 
SSP545, and D 2071–2100 under SSP585. Base map from Esri 
and its licensors, copyright 2022



	 J. S. Prevéy et al.

1 3
Vol:. (1234567890)

invasion after wildfires by allowing for more targeted 
mitigation, monitoring, and restoration.
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