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Roof renewal disparities widen the equity
gap in residential wildfire protection

Sebastian Reining 1 , Moritz Wussow1,2, Chad Zanocco2 & Dirk Neumann 1

Wildfires are having disproportionate impacts on U.S. households. Notably, in
California, over half of wildfire-destroyed homes (54%) are in low-income
areas. We investigate the relationship between social vulnerability and wildfire
community preparedness using building permits from 16 counties in Cali-
fornia with 2.9 million buildings (2013–2021) and the U.S. government’s des-
ignation of disadvantaged communities (DACs), which classifies a census tract
as a DAC if it meets a threshold for certain burdens, such as climate, envir-
onmental, and socio-economic. Homes located in DACs are 29%more likely to
be destroyed by wildfires within 30 years, partly driven by a gap in roof
renewals, one of several important home hardening actions. Homes in DACs
have 28% fewer roof renewals than non-DACs and post-wildfire, non-DAC
homes havemore than twice the increase in renewals (+17%) compared toDAC
homes (+7%). Our research offers policy insights for narrowing this equity gap
in renewals for wildfire-prone areas. We recommend increasing financial
support for roof renewals and targeted awareness campaigns for existing
programs which are not sufficiently emphasized in wildfire strategies, parti-
cularly in DACs.

Changing climate conditions and expanding human development
within the Wildland-Urban Interface (WUI) are contributing to increa-
ses in wildfire impacts worldwide1–4. This is typified by the Western
U.S., where communities have faced substantial increases in the
intensity of wildfires over the past two decades, leading to consider-
able economic, ecological, and health impacts5–8. Among western
states, California has been particularly affected, with 13 of the 20most
destructive fires in its history occurring since 20179. Concerningly,
growing evidence suggests that impacts fromwildfires are inequitable,
with vulnerable communities bearing more burdens from fires10,11, and
also being disproportionately exposed to wildfire smoke12.

However, addressing this equity gap in wildfire impacts is complex
and requires an understanding of both natural processes and human
actions. This is particularly challenging because there is evidence that
some of the proposed solutions are inequitably distributed across
communities. For example, there aredisparities inpublic investment for
wildfire risk reduction13, firefighting resource allocation14, and house-
hold mitigation actions15,16. Wildfire preparedness is a multifaceted and

perpetual process that encompasses risk reduction and prevention, as
well as preparation for potential evacuations. The most critical com-
ponents of wildfire risk reduction for homeowners involve vegetation
management, the reduction of fuels, and home hardening, which is the
utilization of fire-resistant construction materials and design modifica-
tions to make structures less susceptible to fire17,18. For example,
homeowners should use non-combustible siding, fences, and decking
materials, install multi-pane windows with non-combustible shutters,
and choose fire-resistant roofing19. Traditionally, the literature explor-
ing wildfire preparedness has relied on household surveys and
case studies20, which are unable to capture the full geographic
and temporal scale of the issue, as household mitigation actions
are difficult to observe at scale. To address this observed gap in
community impacts, we focus on the adoption of a critical
household wildfire protection action: fire-resistant roofing, which
can be observed by analyzing building permits. Fire-resistant
roofing is identified as one of the most effective home hardening
measures against wildfires18,21,22, yet it is unknown if fire-resistant
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roofs are distributed equitably and what implications this may
have on future wildfire impacts in communities.

Residential preparatory actions are critical for improved com-
munity protection because the spread of fire within communities is
strongly related to the combustibility conditions of structures and
their surrounding environment23. During wildfires, structures can be
threatened by direct flame contact, radiant heat, and, most impor-
tantly, flying embers, which are the primary cause of residential
building destruction24–26. Structures located within 700meters, and in
some cases even as far as 2000 meters, from the firefront can be
destroyed during a wildfire27,28, and roofs, with their large surface
areas, are particularly vulnerable to ignition29,30. We find that fire-
resistant roofs could reduce the risk of destruction of a residential
building if exposed to a nearby wildfire by 8 to 27 percentage points
(p.p., 25th to 75th percentile). The level of a community’s protection,
however, is greater than the sum of its individual measures, as the
benefits of wildfire protection measures extend beyond fire-resilient
properties to neighboring structures31. For instance, our analyses show
that the risk of a fire-exposed residential building being destroyed
couldbe reducedby 4 to 8p.p. if its neighbors havefire-resistant roofs,
and during the 1991 Oakland Hills fire, it was found that each burning
non-fire-resistant roof led to the ignition of ten additional homes29,32.
Consequently, California implemented new building code regulations
in 1995, mandating the use of fire-resistant materials, and further
reinforced these codes in 2008,making them the strictest in the U.S.33.
For example, according to the Building Code (Chapter 7 A)34 all re-
roofings in highwildfire risk areas in Californiamust usematerials with
the highest levels of fire resistance and must modify the eaves and
vents to minimize the accumulation of flammable materials.

While these regulations reduce the risk of wildfire damages35, they
also increase the costs of home retrofits on average by more than
$700036,37, presenting a substantial financial investment for home-
owners. Moreover, there is less financial support available for home
hardening compared to vegetationmanagement, asmost of California’s
grant programs related to wildfire protection focus on the latter38

(Supplementary Note 1). In addition to costs, other factors associated
with the participation in wildfire mitigation actions include building
characteristics, the biophysical environment, perceived risk, actual risk
exposure and occupants’ sociodemographic characteristics15,39–42 (Sup-
plementary Note 2 for an extended literature review). High wildfire risk
areas are typically considered less socially vulnerable43–45. Nonetheless,
recent research also indicates that communities facing higher levels of
past fire exposure often have lower income levels10, as socially and
economically disadvantaged communities may have less capacity to
take protective actions46. Additionally, socially vulnerable communities
may also bear other impacts from wildfires, such as lower future earn-
ings due to smoke-related reductions in educational outcomes47. This
underscores that vulnerability is a compounding process, where limited
resources for recovery can increase a community’s susceptibility over
time48.

In this study, we explore five critical questions: (RQ1) Are there
disparities in wildfire-induced property damages? (RQ2) How effective
are fire-resistant roofs in reducing wildfire-induced property damage?
(RQ3) How equitable is the level of investment in roof renewals? (RQ4)
What is the effect of nearby wildfire exposure on roof renewals? (RQ5)
What are the potential future equity impacts of roof renewals?

To answer these questions, we investigate the relationship
between the adoption of fire-resistant roofing, wildfire exposure, and
social vulnerability by applying the disadvantaged communities
(DACs) designation from the U.S. government’s Justice40 initiative49. A
census tract is designated as disadvantaged if it meets the threshold
for at least one category of environmental or climate-related burdens –
such as climate change, energy, health, housing, legacy pollution,
transportation, water and wastewater, or workforce development –

and also falls below a socioeconomic threshold in terms of income or

education. Additionally, communities within the boundaries of Fed-
erally Recognized Tribes or tracts surrounded by disadvantaged
communities that meet an adjusted low-income threshold are also
considered disadvantaged. Our study focuses on California, due to
the availability of comprehensive data, strict building codes, and since
the state accounts for around 70% of the U.S.‘s wildfire-induced
housing destruction (Supplementary Note 3).

Here, we find substantial disparities in historic wildfire exposure in
California, with more than 54% of the residential structures destroyed
by wildfire between 2013 and 2021 located in communities with a
median income below the 30th percentile. Based on the analysis of
building permits from 16 counties, the rate of roof renewals per
building is around 28% lower in DACs compared to non-disadvantaged
communities (non-DACs). In addition, we observe similar equity gaps in
other preventive approaches such as the Firewise Community pro-
gram, which aims at fostering local, homeowner-driven measures. Our
research also indicates statistically significant differences in home-
owner responses to wildfire exposure in terms of roof renewals. Within
three years of a wildfire, non-DACs experience a 17% rise in roofing
permits, whereas DACs have less than half this increase (+7%). Fur-
thermore, we show that DACs face a much higher risk of wildfire-
related destruction on a building level over the next 30 years (+25%).
The discrepancy in destruction risk could be further expanded if we
account for differences in roof renewal rates (+29%). Finally, we explore
how increases in the roof renewal rate of DACs can reduce this equity
gap. Our results suggest that by focusing on themost at-risk properties,
elevating DACs’ roof renewal rates from the projected 22% to over 50%
in the next 30 years — surpassing those in non-DACs — could close the
gap in expected destruction rates for disadvantaged communities.

Results
Equity gap in wildfire-related destruction of residential
buildings
We find that wildfires disproportionately impacted lower-income
communities in California, as shown by the proportion of wildfire-
destroyedbuildings inDACs compared tonon-DACs from2013 to 2021
(Fig. 1A). Communities in the lowest three income deciles sustained
over 54% of the total residential building destruction (see Supple-
mentary Note 17 for robustness tests), whereas communities in the
highest three deciles incurred 27%, based on our analysis of the CAL
FIRE DINS database. This disparity is accentuated at a per-property
level due to the greater number of buildings in higher-income
communities50,51.

In light of these impacts, we analyzed the associationbetweenfire-
resistant roofing and wildfire-induced destruction of residential
buildings (Fig. 1B). We find that the average fire-resistance score of
wildfire-affected buildings is negatively correlated with destruction,
more so in DACs (−0.63, p = 0.0013) compared to non-DACs (−0.45,
p =0.012). We further model the impact of roof characteristics on the
probability of a residential building getting damagedwhen exposed to
a wildfire (Fig. 1C). Our results indicate that buildings with the most
fire-resistant roofs have a reduced riskof destruction ranging from8 to
27 p.p. (25th to 75th percentile), with an average reduction of 18 p.p.
(Fig. 1C, Supplementary Note 5). This corresponds to a median
reduction of 26%, which is consistent with prior research24,52,53, esti-
mating effects in the 12–33% range. Due to the stringent roofing reg-
ulations for fire-prone areas in California35, newly installed roofs are
likely to provide risk reductions at the upper end of this spectrum.
Moreover, the risk of a building being destroyed can be reduced by 4
to 8 p.p. (mean: 6 p.p.) if its neighbors have fire-resistant roofs. We
control for other construction features, building age and structure
types such as mobile homes, as well as neighborhood characteristics.
Building age is strongly associated with damage probability, with
newer buildings, on average, being less likely to get damaged (Sup-
plementary Notes 5, 13). This finding is consistent with the protective
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effect of Californian building codes, which were strengthened again in
2008 and require the implementation of several fire-resistant mea-
sures, including roofs35.

Disparities in roof renewals for disadvantaged
communities (DACs)
Many of the low-income and fire-impacted communities have mar-
ginalized or underserved populations, or are overburdened by

pollution, and have been recognized as disadvantaged by the U.S.
government. Disadvantaged communities may also have less capacity
for investing in wildfire preparedness, such as effective home hard-
ening measures like roof renewals54. We find that across time DACs
consistently lag behind non-DACs in terms of roof renewals, with the
disparity widening during the COVID-impacted years 2020 and 2021
(Fig. 2A). In these years, DACs had approximately half the renewals of
non-DACs per census tract (−44%), and after accounting for the

Median income decile
Population weighted income deciles of Californian census tracts
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Fig. 1 | Residential buildings destroyed by wildfire and risk reduction of fire
resistant roofs. A Residential buildings destroyed by wildfire in California (2013-
2021) by median income groups. Includes all residential buildings that are con-
sidered ‘destroyed’ based on CAL FIRE’s DINS database. Buildings are spatially
merged with 2010 census tracts and income deciles are calculated using the
population-weightedmedian household incomebasedon the 2015−2019 American
Community Survey73. Classification into disadvantaged communities (DAC) and
non-disadvantaged communities (non-DAC) is based on the definition of the U.S.
government’s Justice40 initiative49, as implemented in its Climate and Economic
Justice Screening Tool (CEJST). The sample includes n = 33,689 residential build-
ings. Measure of income deciles and destroyed buildings per 100,000 buildings
includes 8056 California census tracts (Methods). B Share of destroyed residential
buildings per wildfire event and the average fire-resistance score of the affected
buildings by DAC status. Each point corresponds to a wildfire event, the average
fire-resistance score of all exposed residential buildings (undamaged and
damaged) is displayed along the x-axis and the share of those buildings that were

destroyed during the wildfire event is displayed on the y-axis. The fire-resistance
score is measured on a scale of 0 to 3 and it is based on the number of fulfilled
criteria among the following: roof cover (is either asphalt, metal, concrete, or tiles),
vents (mesh screens > 1/8) and eaves (no eaves or enclosed eaves). The sample
includes n = 40,673 residential buildings exposed to wildfire. C Effect of fire-
resistant roofs on wildfire-induced destruction likelihood of residential buildings.
Displayed values are the predicted percentage point changes based on the results
of a conditional logit regressionmodel that quantifies the association between fire-
resistant roofs and the probability of a building being damaged by a wildfire con-
ditional on wildfire exposure. Negative values signify a decrease in destruction
likelihood. The model includes controls for further building characteristics, con-
struction year, structure type (e.g. single-family vs. mobile home), and fire event
fixed effects (Methods and Supplementary Note 5). The sample includes n = 40,673
residential buildings exposed towildfire. Statistical significance levels are *p <0.05,
**p <0.01, and ***p <0.001.
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number of existing buildings, still 28% fewer roof renewals. The dis-
parities between DACs and non-DACs remain statistically significant in
a panel regression including county and year fixed effects and con-
trolling for socio-demographic and building-related factors such as the
number of mobile homes (Fig. 2B). DAC status is associated with a 32%
(p < 0.001) lower roof renewal rate compared to non-DACs (see Sup-
plementary Note 4 for alternative model specifications). Fire risk is

negatively correlated with the number of roof renewals, potentially
related to stricter regulations that require more expensive roof
installations. In contrast, areas with higher income, more new building
construction, and a higher share of owner-occupancy, are associated
with more roof renewals. This aligns with survey-based literature
suggesting that financial capacity and homeowner presence are
important drivers of wildfire protective actions55, suggesting that a
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Statistical significance levels are *p <0.05, **p <0.01, and ***p <0.001.
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care factor – the willingness and ability of homeowners to invest in
protective measures –may play a role in the decision to renew a roof.
Our findings are also robust to the use of different measures of dis-
advantaged communities (Supplementary Note 14). Our dataset
includes roof renewal information, building features, and socio-
demographic information for over 2.9 million residential buildings
for the 2013 to 2021 period. It was obtained by filtering and geo-
locating building permit data from 16 California counties and spatially
merging them to census tracts.

We next assessed the relationship between roof renewals and
wildfire-induced damages and our analysis shows a statistically sig-
nificant, negative effect. Therefore, we evaluated the association
between the share of buildings with roofs within a census tract that
were renewedwithin the previous 3 years and the number of buildings
that were damaged by wildfires (Fig. 2C). In the event of a wildfire, the
number of wildfire-damaged buildings is 19% lower when the share of
roof renewals is at its maximum compared to its minimum (p <0.01).
Our analysis focuses on the census tracts that were exposed to wild-
fires between2013 and2021, covering approximatelyhalf of theoverall
damage to residential buildings causedbywildfires inCalifornia during
this period.

Effects of wildfire exposure on roof renewals
We find a statistically significant treatment effect of wildfire exposure
on roof renewals. A census tract is classified as treated when its
population-weighted distance to a wildfire has been less than 10 kilo-
meters at any point in the past three years. Wildfire exposure increases
the number of roofing permits in a tract in the following three years on
average by 12% (95% CI: 8% to 16%, p < 0.001) (see Supplementary
Note 4 for detailed regression tables). However, we find substantial
differences in the treatment effect between DAC and non-DAC tracts.
Post-wildfire, non-DACs experience a 17% increase in permits
(p = 0.008, Fig. 3A), while roof renewals within DACs increase by only
7% (not statistically significant, p = 0.13). Splitting communities by the
share of owner-occupied households, we find no statistically

significant interaction effect across all DACs as well as for non-DACs
with a low share of owner-occupied households. However, for non-
DACs with a high share of owner occupancy, the number of new roofs
increases by 22% post-wildfire exposure (p <0.001).

We further employ a negative binomial panel regression with
census tract and year fixed effects and find a statistically significant
increase in non-DAC roof renewals for each of the first 3 years fol-
lowing a wildfire treatment (Fig. 3B). These results are consistent
across alternative model specifications, including county-year fixed
effects, different treatment lengths and distance cutoffs, alternative
ownership limits, as well as other exposure definitions, such as the
number of buildings exposed to a wildfire. In particular, our analysis is
not confounded by post-fire rebuilding efforts as we have excluded
permits near damaged properties, and conducted placebo tests for
pre-wildfire treatments that show no statistically significant effects
(Supplementary Note 4). This design is essentially a difference-in-
difference set-up with staggered treatments, which is motivated by a
common trend of treated and untreated tracts prior to a fire.

The potential of roof renewals for reducing wildfire-related
building destruction in DACs
To assess the implications of the roof renewal equity gap,we simulated
expected wildfire damage in California over the next 30 years. Our
analysis, which is basedon historic building permits, indicates that 22%
of buildings in DACs and 30% of buildings in non-DACs are expected to
get roof replacements over a 30-year-period (Supplementary Fig. 8).
Utilizing First Street Foundation’s wildfire risk model56, we project
futurewildfire exposure for each census tract and estimate the average
proportion of homes destroyed by wildfires. We find a consistent
disparity in wildfire destruction among communities, particularly in
the most wildfire-prone areas. With rising wildfire risk per tract, the
expected destruction of housing increases from below 0.5% for low
and medium-risk areas to above 2.5% for very high-risk areas (Fig. 4A).
Although non-DAC tracts see a greater absolute number of buildings
destroyed (Supplementary Note 6), DACs have a 25% higher
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destruction rate per property (0.7 p.p.) in high-risk zones. If we factor
in the protective benefits of new roofs, the overall rate of destruction
could be reduced by up to 8% (0.3 p.p.) for DACs, however, the gap
between DACs and non-DACs could widen to as much as 29% due to
the differences in roof renewal rates (Fig. 4B). While these results are
basedon the average projectedwildfire riskover the next 30 years, this
gap remains in the 25% to 30% range if we simulate based on lower or
higher risk scenarios (Supplementary Fig. 9).

To investigate the potential benefits of higher roof renewal rates
within DACs, we simulated the expected share of destruction per
census tract as a function of the roof renewal rate (Fig. 4C). We con-
sidered variations in the estimated benefits of renewed roofs, risk
scenarios, and strategies for roof replacement, which determine the
prioritization of renewals. Consistent with our assessment of roof
renewal benefits and findings of prior research35,57, our model also
includes spillover benefits for non-upgraded homes (Supplementary
Note 11). Our analysis uses a dataset that classifies all buildings within a
census tract into ten fire exposure categories, enabling us to simulate
and assess the impact of prioritizing roof renewals across these cate-
gories using different strategies. The first strategy uniformly dis-
tributes new roofs across all risk levels within a census tract

(“uniform”), leading to a steady, albeit incremental, decrease in
destruction. The second strategy, “highest risk within tract”, focuses
on the most vulnerable homes within each census tract, yielding a
more pronounced reduction in risk. The most effective approach
allocates renewals to the most endangered homes across all tracts
(“highest risk across tracts”), highlighting the compounding benefits of
improved homes on neighboring homes.

Figure 4C illustrates three core findings: First, a higher number of
roof renewals could substantially reduce the expected share of
destroyed buildings over a 30-year period (from 3.8% to as low as 2.5%
in case of a 100% roof renewal rate). Second, the reduction in risk
generated by each additional new roof is dependent on both the roof
distribution strategy and the existing rate of renewal. Targeted
approaches (e.g., “highest risk across tracts”) exhibit a convex decline
inmarginal benefit, in contrast to the rather concave shape seenwith a
uniform renewal distribution. Finally, to bridge the gap in destruction
rates between DACs and non-DACs, the rate of roof renewals in DACs
must exceed that in non-DACs. Even with conservative projections of
roof renewal benefits, a substantial mitigation of wildfire risk could be
achievable and the equity gap could be effectively narrowed (Fig. 4D).
This reduction, however, is subject to diminishing returns as the
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Fig. 4 | Counterfactual analysis: Impact of roof renewal rates on disparities in
wildfire-related destruction of buildings in California. A Simulation of the
expected share of destroyed buildings per census tract over the next 30 years split
by wildfire risk and DAC status. The Justice40 fire risk percentile (pct.) categories
and 30-year wildfire exposure risks are based on First Street Foundation’s wildfire
model. The figure depicts the share of destroyed buildings per simulation run
(points) and themean across 1000 runs (vertical lines). The gap is calculated as the
percentage difference between the means. The sample includes n = 8046 census
tracts from California. B Simulating the impact of the different roof renewal rates
on the equity gap in terms of the share of destroyed buildings for DACs vs. non-
DACs within the highest wildfire risk category (“Very High” fire risk in Subfigure
A). Roofs are assumed to reduce the probability of destruction given wildfire
exposure by 0−35%. The sample includes n = 1991 census tracts with the highest fire

risk category from California. C Simulation of the average share of destroyed
buildings across roof renewal rates within DACs with the highest fire risk in Cali-
fornia (“Very High” fire risk in Subfigure A). The destroyed share of buildings
declines as more roofs are renewed. Roof renewal strategies differ by the order in
which buildings are selected for roof renewals. Roof renewal is assumed to yield a
reduction in destruction risk by 25%. The sample includes n = 1991 census tracts
with the highest fire risk category from California.D Required roof renewal rate to
reduce gap to 10%, 5% or 0% across different risk scenarios and roof renewal
benefits. The required roof renewal rate is calculated as the intersection of the
simulated DAC share of destruction with the corresponding non-DAC share of
destruction (Methods). The sample includes n = 1991 census tracts with the highest
fire risk category from California.
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marginal utility of additional roof renewals decreases. In scenarios
where the protective benefits of new roofs are small, roof renewals
alone are insufficient to bridge the equity divide, necessitating addi-
tional interventions. Still, the gap could be reduced considerably to as
low as 10% or 5%.

Discussion
Our study reveals a substantial equity gap in wildfire-related destruc-
tion of residential buildings in California, with lower-income areas
suffering the most structural damage, which is consistent with prior
findings on communities affected by fires10 (RQ1). These communities’
vulnerability is often exacerbated by a lack of resources for effective
post-wildfire recovery and rehabilitation48. The discrepancy in wildfire
damages may stem from various factors such as differences in public
investment in risk reduction projects13, unequal firefighting priorities14,
and the impact of repeated wildfires on income10. However, reverse
causality has also been observed, where socio-economic factors con-
tribute to a rise in wildfire incidents due to rural abandonment and
arson58. Our research offers another explanation, as we document an
equity gapwith respect to investments in homehardening, particularly
by analyzing roof renewals. These are important indicators of home
hardening in wildfire-prone areas and we find that new roofs could
reduce the likelihood that a residential building gets destroyed when
exposed to a wildfire by up to 26% (RQ2). On average DACs have 28%
fewer roof renewals on a per-property level than non-DACs (RQ3).
Given the high replacement costs for a roof36,37, this aligns with earlier
survey-based research indicating that costs are the primary barrier to
implementing structural measures55. Our findings indicate that expo-
sure to nearby wildfires motivates non-DAC homeowners to invest in
roof renewals (RQ 4): within the 3 years that follow an exposure to a
wildfire and within a radius of 10 kilometers, roof renewals increase by
22% on average in non-DACs with high home ownership rates. While
non-DAC tracts with low home ownership rates and DACs also show
increased re-roofing activity after wildfire exposure, the observed
effects are substantially smaller and not significant at the common
p <0.05 statistical significance threshold.

The differences between DACs and non-DACs also extend to less-
costly measures, such as forming Firewise communities, which are
likely to enhance vegetation management. Consistent with previous
literature15, we document that DACs have disproportionately fewer
Firewise communities (SupplementaryNote 7). The voluntary program
by the NFPA promotes local safety solutions by encouraging home-
owners to jointly reduce wildfire risks. Within the areas with the
highest risks, 35% of tracts are disadvantaged, but only 16% of Firewise
communities are situated there, a gap that may further exacerbate
differences in the capacity to mitigate wildfire risk between DACs and
non-DACs. Homeowner associations play a key role in setting up
Firewise communities, yet these associations are less prevalent in low-
income areas59. Taken together, this suggests a gap in both informa-
tion provision and capacity for fire mitigation in these regions.

The equity gap in wildfire preparedness is particularly concerning
given the increasing wildfire risks throughout the U.S. and in other
parts of the world. Our simulations of building destruction over the
next 30 years reveal a pronounced disparity between DACs and non-
DACs (+25%), further amplified by the variance in roof renewals (up to
+29%, RQ5). Yet, our analysis also demonstrates that strategically
directed public investments in home hardening can substantially
mitigate structural losses. To reach equity in terms of destruction in
the high wildfire risk zones of California, our base scenario shows that
upgrading around 527,000 buildings (52% roof renewal rate) in DACs
would be necessary. Assuming an average cost of $20,000 per roof
and potential funding mechanisms covering 30%, the financial
investment need stands at $105 million annually – if the effort is dis-
tributed evenly across the next 30 years. These investments could save
approximately 10,000 buildings in DACs, valued at $5 billion,

representing a net gain of $2 billion for the economy (Supplementary
Note 12). While the projected costs are considerable, they appear
modest when viewed in the broader fiscal context – California’s CAL
FIRE annual base budget alone is $2.9 billion, with peak years incurring
over $1 billion in supplemental wildfire suppression costs60. Also,
California already allocates hundreds of million dollars annually to
wildfire prevention grants, which primarily target vegetation
management38 (Supplementary Note 1). Existing local initiatives offer
only limited home hardening funds, typically between $2000 and
$5000, far short of the average renewal cost for a roof.

Investing in home hardening and especially new roofs creates
other important benefits. California’s insurance market is character-
ized by soaring premiums and the retreat of insurers from high-risk
zones61, and roof renewals couldhelpwith stabilizing insurance rates in
these areas. Additionally, while the relative benefits of roofing may
seem less immediate compared to other preventive measures such as
vegetation management, roofs offer a long-lasting impact with less
ongoing maintenance. Furthermore, the adoption of modern roofing
technologies increases home energy efficiency, and recent research
suggests energy savings of up to 32%62. Relatedly, a roof renewal can
improve a household’s readiness for rooftop solar, contributing to
broader energy cost savings and the achievement of sustainability
goals63.

Our findings yield practical insights for policymakers. First,
focusing resources on high-risk communities reduces risk more
effectively than a widespread distribution, as the risk reduction ben-
efits of a new roof extend to neighboring properties, thereby enhan-
cing the collective impact31,57. Second, our findings highlight the
experiential learning of homeowners, as roof renewals increase on
average by 12% in the three years following wildfire exposure. The
observed treatment effect is in line with the Protection Motivation
Theory64 (Supplementary Note 2 for extended literature review). The
theoryposits that as individuals update their assessments of risks, their
motivation to invest in protection (i.e., new roofs) increases. Thus a
“window of opportunity”65 for public investment arises in the after-
math of a wildfire, during which homeowners are particularly inclined
towards preventative actions. Our study substantiates the observed
behavioral shifts post-disaster with empirical evidence, adding to the
body of work on disaster response behaviors64,66. Third, our research
suggests directing more funds towards home hardening in dis-
advantaged communities. Interestingly, DACs are not inherently
averse to investing in fire prevention; our findings indicate that once
established, Firewise communities in DACs are similar to those in non-
DACs in terms of the number of members and the probability of
staying active, and while average investments are lower in DACs such
disparities decline with increasing exposure to fire risk (Supplemen-
tary Note 7). We therefore argue that DACs need the support of tar-
geted policies to help them take the first steps toward enhanced
wildfire preparedness38,46.

Our study is not without limitations, offering avenues for future
research to explore. First, while our focus on roofing and Firewise
communities addresses key elements of wildfire preparedness, it is by
no means exhaustive; other home hardening measures such as wall,
window, and door upgrades17 as well as vegetation management are
also important for effective wildfire resilience. Homeowners and pol-
icymakers should note that comprehensive fire vulnerability assess-
ments of structures are necessary, and roofs should be considered just
one element among many actions. Roof renewals alone do not guar-
antee home protection. Second, the large variation in the frequency
and severity of wildfires67 can lead to a small number of highly
destructive events disproportionately affecting the results. Still, our
main results are robust to the exclusion of the largest fires (Supple-
mentary Note 5 and 15). Third, our analysis relies on building permit
data, which, due to variation in data availability and quality, likely
underestimates the true roof renewal rate. Around 20% of permits

Article https://doi.org/10.1038/s41467-024-55705-w

Nature Communications | (2025)16:463 7

www.nature.com/naturecommunications


could not be located and hence were excluded from our analysis. This
likely only affects the magnitude of the renewal rates and does not
introduce bias, as our regression analyses incorporate spatial fixed
effects at the county or census tract level, helping to mitigate any
discrepancies in how permits are processed across different counties.
Additionally, our dataset lacks granular information on the installed
base and quality of homes, as we only observe some building features,
such as construction year, at the census tract level and even for older
buildings of the same construction age there can be varying levels of
fire resistant roofing materials (e.g., clay tile). Lastly, our counter-
factual simulation should be seen as a data-driven evaluation to assist
policy-making rather than an exact projection of future wildfire
impacts. It does not account for new construction, which tends to be
higher in non-DACs and typically features homes of better quality and
fire resilience50. Our model also simplifies the estimation of home
destruction by clustering at the census tract level instead of assessing
wildfire destruction risk and roof benefits on a building-by-building
basis. This presents an opportunity for more nuanced analysis
using detailed building features that could potentially be derived from
aerial and street view imagery68. Parcel-level vulnerability analysis
could determine which wildfire exposure types are most likely and
which home hardening measures have the greatest impact.

While our geographic focus is on California, we believe that our
research offers valuable insights beyond the state’s borders. Histori-
cally, California has been the state most prone to destructive wildfires,
as climate change leads to drier, warmer conditions, areas less accus-
tomed towildfires are increasingly at risk69. Thedevastatingwildfires in
Hawaii in 2023, destroying over 2,200 structures and causing over a
hundred fatalities70, and the 2024 California Park Fire, which to date is
among the largest in the state’s history71, highlight this escalating
threat. Areas in theU.S. andbeyond that face futurewildfire risk should
therefore act preemptively and adapt building codes as well as offer
necessary financial support for homeowners. Proactive policy action is
crucial, as homeowners increasingly shift responsibility to
governments55, and a change in building codes might take decades to
yield a widespread presence of hardened homes. Future work could
quantify the collective benefits of group versus single-home roof
renewals and delve into how different types of resiliencemeasures can
be integrated most effectively to support fire-resistant communities.

Our research argues for a substantial expansion of new and
existing home-hardening policy initiatives in wildfire-prone commu-
nities, which appear to be currently underemphasized in wildfire
defense strategies – particularly so in disadvantaged communities.
Additionally, our counterfactual analysis indicates that roof renewals
on their own may not suffice to bridge the equity gap in wildfire resi-
lience so it is essential to maintain fire safety as a composite strategy,
integrating various protective measures and balancing the allocation
of resources. In this respect, the recently launched “CaliforniaWildfire
Mitigation Program - Home Hardening Initiative”, which is funded by
CAL OES, CAL FIRE, and local communities shows a promising
approach26. Currently in its pilot phase, this program aims to provide
assistance to disadvantaged homeowners in high-risk wildfire zones in
San Diego. The focus is on home hardening and creating defensible
spaces, supporting homeowners with up to $40,000. Our research
demonstrates the critical nature of such initiatives, highlighting the
necessity for policymakers in all wildfire-prone regions to acknowl-
edge and engage with household-level proactive preparedness
investments.

Methods
Data sources
All data applied in our study were either acquired from public sources
or were obtained via Freedom of Information Act and public records
requests. For our main analysis, we used seven different data sources.
(1) The CAL FIRE Damage Inspection Database (DINS)72 provides

detailed information onover 90,000 structures affectedbywildfires in
California from 2013 to 2022. It includes information about properties
such as their location, extent of damage, and building characteristics
including roofing materials. (2) Socioeconomic information was
obtained from the American Community Survey’s (ACS) 5-year
estimates73. A census tract is a small, relatively stable geographical
unitdefinedby theCensusBureau, containing between 1200and8000
residents and on average around 1500 residential buildings. Tracts are
designed to facilitate statistical comparisons and analyses of popula-
tion and socio-economic data within a region. (3) Classification of
communities into disadvantaged (DAC) and non-disadvantaged (non-
DAC) and assignment of fire risk groups is based upon the U.S. Council
on Environmental Quality’s Climate and Environmental Justice
dataset49. (4) Thenumber of roof renewalswas extracted frombuilding
permits that are issued by city and county authorities. Assessor parcel
maps were utilized to geocode the permits and assign them to census
tracts. We gathered a more extensive collection of building permits
than those available online by directly contacting the relevant county
offices but did not include some databases due to incomplete infor-
mation (three counties) or non-digitized permits (one county). We
focused on residential roofing renewals, excluding solar installations
and any repeat permits within the same year. We also excluded 304
census tracts due to concerns of incompleteness, since less than five
permits were reported for these tracts. Our final dataset comprises
permits for buildings across 16 counties, covering 2563 census tracts
for 9 years from 2013 to 2021 (see Supplementary Note 8 and 9 for
details). (5) Fire perimeters were extracted using CAL FIRE’s fire
repository74. (6) To simulate thewildfire exposureof census tracts over
the next 30 years, we employed publicly available wildfire risk esti-
mates from First Street Foundation75. (7) We utilized the location and
year of establishment of Firewise communities in the U.S. as identified
by the National Fire Protection Association (NFPA)76. (8) To approx-
imate insurance coverage within a tract, we used the Community
Service Statement from California’s Insurance Commissioner and
matched their ZIP code level data to census tracts77. (9) Information on
residential solar adoption was obtained from Berkeley Lab’s “Tracking
the Sun” (TTS) project78. (10) Finally, we used the CalEnviroScreen 4.0
dataset for robustness checks for the measure of disadvantaged
communities79.

Analysis of wildfire-induced building destruction in California
To quantify the proportion of Californian buildings that were
destroyed by wildfire, we analyzed data from CAL FIRE’s Damage
Inspection (DINS) database72. We chose California as a representative
state because it accounts for over two-thirds of total wildfire-induced
building destruction in the U.S. during our study period (Supplemen-
taryNote 3) and theDINSdatabase containsmoredetailed information
than similar databases from most other states. We followed the defi-
nition of CAL FIRE and only included buildings that are labeled
‘destroyed’ (i.e., with a damage assessment of at least 50%), which
account for 92% of all damaged residential buildings. We further
focused our analysis on residential buildings, thus excluding around
20,000 non-residential destroyed buildings. We classified buildings as
residential if their structure type in the DINS database was listed as
family homes or residential buildings, including both single- andmulti-
story structures. Notably, this did not substantially alter the main
results of our analysis.Ourfinal dataset of 33,689destroyed residential
buildings was then spatially joined with 2010 U.S. census tract
boundaries80. Income deciles were computed using population-
weighted median household incomes from the 2015 to 2019 Amer-
ican Community Survey (ACS)73, to align with the boundaries of dis-
advantaged communities as outlined by the U.S. Justice40 initiative49.
To account for the margin of error in the median household income
estimates provided by the ACS, we used a bootstrapping approach to
test the robustness of our main result (Supplementary Note 17). We
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then calculated the number of destroyed structures per decile and
weighted it by the number of existing buildings within each decile as

Weighted Wildf ireDestructionDecile

=
Number of Destroyed ResidentialBuldingsDecile

Number of ResidentialBuildingsDecile

ð1Þ

Wildfire protection benefits of a new roof
To estimate the wildfire protection benefits that are provided by a new
roof, we combined insights from prior research with our own calcu-
lations.Our reviewof the literature suggests that a new roof can reduce
the likelihood of wildfire-induced destruction by 12% to 33%24,52,53

(Supplementary Note 2 for expanded Literature Review), depending
on location, building age, and on how a roof is defined (e.g., whether it
includes eaves and vents). Our own calculations are based on the CAL
FIRE DINS Database, containing information for more than
90,000 structures exposed to a wildfire in California from 2013 to
2022. While for some fires, the database only describes structures
reported as damaged, for other fires there is also information on non-
destroyed homes. To ensure that per fire there are suitable counter-
factuals, we restricted our analysis to fire events where there are
at least 100 undamaged buildings recorded in the database. Our final
dataset consists of 40,673 residential buildings exposed to wildfire. To
create a binary measure, we coded all damaged buildings with a
damage value of 26% or higher as 1 (damaged) and otherwise 0 (not
damaged). We then ran a conditional logit regression with fire-event
fixed effects of various housing characteristics on the assessed
damage. Our definition of a fire-resistant roof encompasses not only
the roofing material but also eaves and vents, aligning with previous
literature37. We then estimated the wildfire protection benefits by
predicting the change in destruction likelihood for eachbuildingwhen
the roof-related variable is set to 0 versus 1. To reflect previous
research findings and the uncertainty around the true wildfire pro-
tection benefit provided by a new roof, we vary the parameter of
reduction in destruction likelihood in our counterfactual simulations
between 15% and 35%.

Relationship of roof renewal rates and wildfire induced damage
To estimate the impact of roof renewal rates onwildfire risk reduction,
we applied negative binomial regression to model the logged number
of wildfire-damaged residential buildings within a census tract in a
given year. The primary independent variable is the share of buildings
within a census tract that had a roof renewal within the previous three
years.

LogðWildf ire DamagesTract,YearÞ= f ðβRoof sTract, Year + γXTract,Year

+ δCounty +ϕYear + ϵÞ
ð2Þ

Controls include the wildfire risk score as given by First Street
Foundation’s wildfire model75, the number of Firewise communities,
andwhether a tractwas exposed to awildfire in a given year. Additional
controls are average building age, the number of mobile homes, and
the share of owner-occupied buildings.

Our analysis focuses on census tracts with roof renewal data,
which account for 19,673 destroyed or wildfire-damaged buildings
between 2013 and 2021, representing 53% of all wildfire damage to
residential buildings in California. We restrict our analysis to census
tracts exposed to wildfires larger than 300 acres. Our results are also
robust to limiting our analysis to census tracts that sustained building
damages from wildfires. Supplementary Note 14 provides additional
tests with various regression specifications, consistently showing a
negative coefficient for roof renewal rates, though not always statis-
tically significant.

Identifying the association of disadvantaged community status
with the number of roof renewal decisions
Due to the regulations in California that prescribe fire-resistant roof
renewals, an investment in a new roof represents an investment in
wildfire safety. To assess the association of disadvantaged community
status with roof renewal decisions, we applied count regression ana-
lysis to a panel dataset of roof building permits from 2563 California
census tracts that were observed across nine years (2013−2021). Our
main variable of interest is the indicator of disadvantaged community
status (DAC), based on the U.S. Council on Environmental Quality’s
Climate and Environmental Justice dataset49, which aligns with other
studies using the samemetric81. We also include a rich set of tract-level
control variables X (e.g., household income, population density,
building age, the year residents moved into their current census tract,
etc.), aswell as county and yearfixed effects to account for unobserved
heterogeneity:

Count of Roof RenewalsTract, Year = f ðβDACTract + γXTract, Year

+ δCounty +ϕYear + ϵÞ
ð3Þ

In our main specification, we apply negative binomial count
regression, which is particularly suited for overdispersed count data,
because it explicitly models variance82. The model coefficients repre-
sent the expected change in the log count of the dependent variable
μ̂Tract (the number of roof renewals within a tract) for a one-unit
change in the predictor variable:

μ̂Tract = e
ðβXTract, Year + γCounty +φYear Þ ð4Þ

Here, β is a vector of regression coefficients for the independent
variables, while γ and φ are spatial and temporal fixed effects,
respectively. All independent variables X are normalized to values
between 0 and 1. To interpret these coefficients more tangibly, we
exponentiated the coefficients for our plots, translating them into a
factor by which the original count (i.e., the number of roof renewals)
changes if the independent variables are at their maximum compared
to their minimum.

The more parsimonious Poisson regression yields directionally
similar coefficient estimates but fits the data less well (Supplementary
Note 4). The Poisson regression is a special case of the negative
binomial regression and assumes that the mean equals the variance82.
We also refined our analysis to avoid conflating roof renewals with
post-fire rebuilding by excluding buildings identified as damaged in
the DINS database and all buildings within a 50-meter radius of
destroyed buildings. Alternative analytical methods considering these
damaged buildings did not substantially alter our regression out-
comes, indicating that our findings are consistent and reliable.

Identifying the effect of wildfire exposure on roof renewal
decisions
Building on the building permit dataset from 2563 California census
tracts, our empirical strategy aims to further identify the effect of
wildfire exposure on roof renewal decisions. We employed a
difference-in-differences strategy to compare changes in roof renewals
for exposed tracts to unexposed tracts. To model the number of roof
renewals on the census tract level we ran a negative binomial panel
regression, which we specified as follows:

Roof RenewalsT ,Y = f ðβ � ExposureT ,Y � DACT � HOT ,Y + γXT , Y

+ δT +ϕY + ϵÞ
ð5Þ

The binary variable ExposureT,Y indicates that a census tract T is
defined as treated in year Y. To analyze treatment effect heterogeneity,
we included DAC status and homeownership indicators, denoted as
HOit, along with their interaction effects with ExposureT,Y into the
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regression analysis. HOit represents a binary variable that signifies
whether the share of homeowner-occupied housing within a tract is
below the 25th percentile. XT ,Y is a vector of tract-level control vari-
ables (e.g., household income, population density, building age, the
year residents moved into their current census tract, etc.). This binary
approach simplifies interpretation, is less affected by outliers, and
accommodates non-linear relationships better than continuous vari-
ables. Our analysis incorporates fixed effects, particularly census tract
fixed effects δT to control for unobservable and time-invariant differ-
ences in roofing decisions across tracts, e.g., driven by varying plan-
ning departments (for the permits). Year fixed effects ϕY account for
temporal changes impacting roofing, such asmacroeconomic shifts or
legal changes.

Wedefinedwildfire exposure as a binary variable ExposureTract,Year,
which is equal to 1 if the population-weighted average distance to a
largefire in the past three yearswas below 10 kilometers (6.21miles). In
accordance with the National Wildfire Coordination Group’s classifi-
cation of Class E or higher fires83, we defined a fire to be large if it
burned more than 300 acres (around 120 hectares). We hypothesized
that homeowners closer to a firewould bemore influenced, which also
follows previous literature that finds highly localized treatment
effects84. Given the longevity of roofs and the substantial size of the
investment in combination with the process of finding a contractor
and applying for a permit, we defined the treatment period to be three
years after a fire. This assumption is also validated in our event-study
type regression.

Our panel regression model is essentially a difference-in-
differences design with staggered treatment timings. Thus, the iden-
tification of a treatment effect requires several assumptions such as a
common trend between treatment and control groups. Following
previous literature85, we substantiate this assumption with an event-
study type regression. A range of robustness tests aims at alleviating
the secondary threat, which could arise from tract-specific, but time-
variant variables, which we have not observed. Also, we implemented
placebo treatments prior to a fire to test the possibility of fire affecting
pre-treatment outcomes and reverse causality (Supplementary
Note 10 for detailed discussion of threats to identification).

Our results remain both valid and statistically significant across a
series of robustness tests.We integrated a rich set of controls andfixed
effects and experimented with multiple model specifications. In some
specifications, we added county-by-year fixed effects for annual leg-
islative or political changes in counties. Our results are also robust to
different specifications of the treatment variable (Supplementary
Note 4 for detailed regression tables and robustness checks).

Counterfactual simulations to quantify the potential of roofing
initiatives for narrowing the equity gap in wildfire-induced
destruction of residential buildings
We conducted counterfactual simulations to evaluate the impact of
roof renewal rates on the future equity gap in wildfire-induced
destruction of residential buildings in California. We simulated the
expected number of destroyed residential buildings over the next 30
years for each census tract, considering different wildfire risk scenar-
ios, the risk reduction potential of new roofs, and various roof repla-
cement strategies.

To project future wildfire exposure and the average proportion of
homes destroyed bywildfires for each census tract, we use the wildfire
risk model from the First Street Foundation75. Their wildfire risk esti-
mates are based on a 30m spatial resolution model incorporating
wildfire fuels, weather patterns, information on climate change, and
structure vulnerabilities56, and the model’s results are also utilized by
prior research to analyze future wildfire hazards38,46,86. The publicly
available dataset classifies each building in a tract into 10 risk clusters.
Based on historical data, we modeled roof renewal rates for DAC and
non-DAC tracts and projected new roofs in disadvantaged and non-

disadvantaged tracts over 30 years, assuming a constant number of
buildings. We tested three roof renewal strategies that differ in the
order of re-roofing prioritization: (1) selecting buildings at random,
giving rise to a uniform distribution across risk categories; (2) prior-
itizing highest-risk buildings within each tract; (3) focusing on the
highest-risk buildings across all tracts. Each strategywas assessed at 10
incremental renewal rates (10% to 100%). High roof renewal rates
(> 50%) were modeled to reduce wildfire exposure for adjacent lower-
risk clusters of buildings within a tract. Our simulations incorporated
three wildfire risk scenarios (minimum, maximum, and average risk)
and three roof benefit scenarios (15%, 25%, and 35% reduction in
destruction likelihood). For each combination of these scenarios and
roof renewal strategies, we conducted 1000 simulation runs, totaling
270,000 samples per tract.

Destruction likelihood uponwildfire exposurewasmodeled using
a beta distribution, with adjustments for new roofs and spillover
effects in clusters of buildings with a high number of new roofs. We
calculated the average destruction share across different scenarios
and fitted a polynomial regression to estimate required roof renewal
rates to close the equity gap between disadvantaged and non-
disadvantaged communities. See Supplementary Note 11 for a
detailed explanation of the counterfactual simulation and additional
results.

Analysis of Firewise communities
In our analysis, we focused on the over 2,000 Firewise communities
across the United States that were active in 2022 (Supplementary
Note 7). The dataset offers a snapshot of these communities, detailing
when they were established, their resident population, and their
cumulative investment over the years. To determine whether it falls
within a disadvantaged community, we spatially match each Firewise
community to the census tract that contains the point location that
describes the community’s location. We calculated the average annual
investment by dividing the given total investment by the number of
years the community has been active. Although this approach assumes
a uniform distribution of investments across time, which is a simplifi-
cation, it offers a valuable starting point for understanding the invest-
ment patterns of these communities. We suspect substantial
survivorship bias within the data as it only contains information on the
currently active communities. As a result, we have chosen to forego a
formal regression analysis generalizing findings to a broader context
or infer causality in favor of reporting descriptive statistics. Despite
this limitation, our analysis illustrated existing patterns and trends of
the Firewise communities.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data applied in our study were either acquired from public
sources or were obtained via Freedom of Information Act and public
records requests. CAL FIRE’s Damage Inspection Database (DINS) is
available at (https://www.fire.ca.gov/about/resources/california-
public-records) (Request number R006742-013123). American Com-
munity Survey (ACS) 5-year estimates are available at the Census
Bureau (https://data.census.gov/.). The Climate and Environmental
Justice dataset is available at theU.S. Council on Environmental Quality
(https://www.whitehouse.gov/environmentaljustice/justice40/).
Building permits and assessor parcel maps were obtained from local
authorities through open data portals or public requests. CAL FIRE’s
repository for fire perimeters is available through their GIS datacenter
(https://frap.fire.ca.gov/mapping/gis-data/). Wildfire risk estimates
from First Street are available for the public (https://firststreet.org/
data-access/public-access/). Firewise communities data is available
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through the NFPA (https://www.nfpa.org/Public-Education/Fire-
causes-and-risks/Wildfire/Firewise-USA). The data for replicating the
analyses presented in this study is deposited in the Open Science
Framework under accession code https://osf.io/f8g94/?view_only=
3f12a54e48a2442c876810fd1ad73156.

Code availability
The code for replicating the analyses presented in this study is
deposited in the Open Science Framework under accession code
https://osf.io/f8g94/?view_only=3f12a54e48a2442c876810fd1ad73156.
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