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Abstract

Background Sagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research

on vegetation treatments that reduce fuels and fire risk has been short term (2-3 years) and focused on ecological
responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments
that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment
effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses.

Results Our review revealed tradeoffs in woody fuel treatments between reducing canopy fuels vs. increasing under-
story herbaceous vegetation (fuels) and fire behavior. In pinyon-juniper expansion areas, all treatments decreased
crown fire risk. Prescribed fire and cut and broadcast burn treatments reduced woody fuels long-term but had higher
risk of invasion. Mechanical treatments left understory vegetation intact and increased native perennial plants. How-
ever, cut and leave treatments increased downed woody fuel and high-intensity wildfire risk, while cut and pile burn
and mastication caused localized disturbances and annual grass invasion. Ecological outcomes depended on ecologi-
cal resilience; sites with warm and dry conditions or depleted perennial native herbaceous species experienced lower
recovery and resistance to invasive annual grasses. In invasive annual grass dominated areas, high-intensity targeted
grazing reduced fine fuels but required retreatment or seeding; in intact ecosystems with relatively low shrub cover,
dormant season targeted grazing reduced fine fuel and thus fire spread. Preemergent herbicides reduced annual
grasses with differing effects in warm and dry vs. cool and moist environments.

Conclusions The information largely exists to make informed decisions on treatments to mitigate effects of wildfire
and improve ecological resilience at local, project scales. Primary considerations are the short- vs long-term tradeoffs
in fuels and fire behavior and thus fire severity and the likely ecological response.

Keywords Sagebrush, Pinyon-juniper, Invasive annual grasses, Fuels, Fire behavior, Ecological resilience, Prescribed
fire, Mechanical fuel treatments, Targeted grazing, Herbicide treatments

Resumen

Antecedentes Los ecosistemas de arbustales de artemisia (Artemisia spp.) estan experimentando aumentos de
incendios tanto en extensién como en severidad. La mayoria de las investigaciones sobre tratamientos de reduccion
del combustible y por ende del riesgo de incendios, han sido de corto plazo (2 a 3 afos) y enfocados en respuestas
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ecologicas. Revisamos las causas de la alteracion de los regimenes de fuegos y resumimos la literatura sobre los
efectos a largo plazo de los tratamientos que modifican 1) los combustibles de arbustos; 2) los combustibles en los
doseles de juniperos y pinos pifoneros, y 3) combustibles herbaceos finos. Describimos los efectos de los tratami-
entos sobre los combustibles, el comportamiento del fuego, la resiliencia ecoldgica, y la resistencia a la invasion de
pastos anuales.

Resultados Nuestra revision reveld compensaciones en los tratamientos de material combustible lefloso entre la
reduccion de los combustibles del dosel vs un incremento en los combustibles herbdceos superficiales y el compor-
tamiento del fuego. En las dreas de expansion del pino pifionero y del junipero, todos los tratamientos redujeron el
riesgo de fuego de copas. Los tratamientos de quemas prescriptas y de corte, desparramado del combustible y su
posterior quema, redujeron los combustibles lefiosos a largo plazo, pero tuvieron un mayor riesgo de invasion. Los
tratamientos mecénicos dejaron la vegetacion del sotobosque intacta, y se incrementd la cantidad de especies per-
ennes nativas. Sin embargo, los tratamientos de corta y abandono de los restos in situ incrementd la carga de estos
combustibles y aumento el riesgo de fuegos de alta intensidad, mientras que el corte, apilado y posterior quema, y el
triturado causaron disturbios localizados y la invasién de pastos anuales. Los resultados ecoldgicos dependieron de la
resiliencia ecoldgica; sitios con condiciones secas y calidas o con escasa vegetacion herbacea nativa experimentaron
una recuperacion mas lenta y menor resistencia a la invasion de pastos anuales. En dreas dominadas por especies de
pastos anuales invasores, el pastoreo aplicado a una alta intensidad redujo la cantidad de combustibles finos, pero
requirié de resiembra posterior; en ecosistemas intactos con una cobertura relativamente baja de arbustos, el pas-
toreo aplicado durante la etapa de dormancia, redujo la cantidad de combustibles finos y por ende la velocidad de
propagacion del fuego. Los herbicidas de pre-emergencia redujeron los pastos anuales con efectos diferentes entre
ambientes secos y calidos vs templados y frios.

Conclusiones La informacion existente es profusa como para tomar decisiones de manejo sobre los tratamientos

que permitan mitigar los efectos de los fuegos de vegetacion y mejorar asf la resiliencia ecolégica a escala local o de
proyecto. Los consideraciones primarias deben enfocarse en las compensaciones de corto y largo plazo tanto en los
combustibles como en el comportamiento del fuego, y por ende en la severidad del fuego y sus posibles respuestas

ecoldgicas.

Introduction

A strong impetus exists for implementing fuel treatments
to reduce fire hazard and risk in sagebrush (Artemisia
spp.) ecosystems. Between 2000 and 2020 more area
burned across the western US from wildfires in shrub-
land and herbaceous ecosystems (56%) than in forested,
tree-dominated landscapes (44%) with the shrubland and
herbaceous ecosystems experiencing increasing trends
in area burned, number of burned patches, and fire sizes
(Crist 2023). In sagebrush-dominated landscapes (Jeffries
and Finn 2019), wildfires burned >9 million ha (22.3 mil-
lion acres) from 1984 to 2020, primarily in the Northern
Basin and Range, Snake River Plain, and Central Basin
and Range ecoregions (Fig. 1) (Crist et al. 2023).

Altered fire regimes interact with other anthropogenic
and ecosystem perturbations, driving widespread trans-
formation to alternative ecological states (Fusco et al.
2019; Ellsworth et al. 2020; Davies et al. 2021a, b). Pro-
gressive urban and exurban expansion and associated
infrastructure, land conversion to agriculture, and oil
and gas development (Knick et al. 2011) are resulting in
a high number of human-caused fire starts and increased
fire frequency (Fusco et al. 2016). In parallel, invasion

and expansion of invasive annual grasses and forbs are
creating continuous and highly flammable fine fuelbeds
with longer fire seasons (Bradley et al. 2018), and result-
ing in type conversion to invasive annual grasslands
(Fusco et al. 2019; Smith et al. 2021). In addition, native
pinyon pine (Pinus spp.) and juniper (Juniperus spp.)
trees (pinyon-juniper) are expanding into sagebrush eco-
systems (Morford et al. 2022) and depleting native shrub
and herbaceous understory species (Miller et al. 2019). In
the initial phases of expansion, surface fuels are reduced
but continued stand infilling and tree growth results in a
new strata of crown fuel, increased threat of high severity
crown fires, and the potential for conversion to alterna-
tive states (Miller et al. 2019). The fuel-related changes
occurring in sagebrush ecosystems are exacerbated by
elevated CO, which is projected to increase herbaceous
production (fine fuels) in many areas (Zimmer et al.
2021) and climate warming which is already causing
longer fire seasons and more severe fire weather (Abatzo-
glou and Kolden 2013, Abatzoglou et al. 2016, 2018).
Consequences of altered fire regimes include a rising
risk to lives, homes, communities, and infrastructure
(USDA 2022a). Increasing economic costs are resulting
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Fig. 1 Sagebrush-dominated area that burned across the sagebrush biome from 1984 to 2020. LANDFIRE Biophysical Settings (BpS; US Geological
Survey 2014) were used to identify sagebrush-dominated areas, and wildfire perimeters (Welty and Jeffries 2021) were used to determine the area
burned. Red areas depict where fires burned in sagebrush-dominated communities, which are shown in light blue. Dark gray represents the area

burned either outside of the sagebrush biome or within the sagebrush biome that is not a sagebrush-dominated BpS, such as forests, woodlands,

and other shrublands. Figure from Crist et al. 2023

from home and property loss, depreciated property val-
ues, emergency services, and fire suppression as well as
a loss of ecosystem services and the need for long-term
landscape restoration (Barrett et al. 2018). Loss of habi-
tat is resulting in declining populations of many sage-
brush-dependent species, such as the greater sage-grouse
(Centrocercus urophasianus), and increasing the risk of
listings under the U.S. Endangered Species Act (Coates
et al. 2016; Remington et al. 2021).

Altered fire regimes and ecosystem transitions to alter-
native states are not unique to sagebrush ecosystems, and
new policies and funding to increase capacity to prevent
and suppress wildfires and to restore ecological resilience
(Table 1) are resulting in implementation of vegetation
management treatments across the sagebrush biome

and elsewhere in the USA (USDA 2022b). Many of these
treatments can be defined as fuel treatments, which are
implemented to reduce or redistribute burnable mate-
rial with the goal of decreasing fire spread rates, intensi-
ties, and/or severities (Reinhardt et al. 2008; Hood et al.
2022) (see Table 2 for definitions of the terms used in
this review). In sagebrush ecosystems, the primary objec-
tive of fuel treatments is to decrease woody or fine fuels
in a manner that has reliable and durable effects on fire
behavior (Miller et al. 2013, 2019). However, a secondary
objective of these same treatments is often to improve
ecological resilience to disturbances like wildfires and
resistance to invasive plants (Miller et al. 2013, 2019). For
example, in sagebrush ecosystems experiencing pinyon
and juniper expansion prescribed fire and mechanical
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Table 1 Recent federal policies and funding initiatives for fire suppression, fire prevention, and prefire fuels mitigation

« National Cohesive Wildland Fire Management Strategy (Cohesive Strategy; USDA and USDOI 2014)—Established guidelines for wildfire response pre-
paredness, improving vegetation and fuel management, facilitating prefire mitigation activities, and preventing human-caused ignitions. The Cohesive
Strategy acknowledged that vegetation and fuel management was challenging because it involves designing and prioritizing the locations of fuel
treatments not only to decrease fire risk, but also to meet resource objectives and improve the resilience of rangelands and forests

« An Integrated Rangeland Fire Management Strategy (Rangeland Strategy; USDOI 2015)—developed in response to USDOI Secretary Order 3336,
Rangeland Fire Prevention, Management and Restoration. The Rangeland Strategy emphasized protecting core habitat for Greater sage-grouse

and building resilience to wildfire and resistance to invasive annual grasses. Key aspects include working at landscape scales, promoting collaboration
across boundaries, and improving prevention, fire suppression, and ecosystem restoration

- The Wildfire Crisis Strategy (USDA Forest Service 2022) builds on the Cohesive Strategy and directs the Forest Service to work with partners to focus
fuels and forest health treatments strategically and at appropriate scales using the best available science. Under the Wildfire Crisis Strategy, as many
as 20 M acres of National Forest System lands and 30 M acres of other Federal, State, Tribal and private lands would be treated over the next 10 years.
A range of fuels and forest management activities will be implemented, including mechanical thinning and prescribed fire, followed by maintenance
treatments at intervals of 10 to 15 years

« The Infrastructure Investment and Jobs Act (IlJA 2021) provides nearly $3 billion for hazardous fuel reductions and restoration, and the Forest Service's
landscape investment plan (USDA Forest Service 2022b) targets several watersheds in the sagebrush biome for fuel and fire management treatments

treatments, such as cut and leave, are often implemented
both to reduce woody fuels and the risk of crown fire and
to increase native shrubs and herbaceous plants so to
increase resilience and resistance and prevent transitions
to undesirable alternative states postfire (Mclver et al.
2010; Chambers et al. 2014b).

In recent decades, hundreds of vegetation management
treatments have been implemented in sagebrush ecosys-
tems with the objectives of reducing fuels and fire risk and/
or increasing resilience and resistance (Pilliod et al. 2017).
Recent reviews of treatments conducted in sagebrush eco-
systems specifically to reduce fuels have provided general
overviews of a variety of fuel treatments (Shinneman et al.
2023) or concentrated on fuel breaks (Shinneman et al.
2018, 2019). Most of the available literature on treatments
conducted to reduce fuels focuses on the ecological effects,
and relatively little information exists on the longer-term
(>3 years) effects of treatments on fuels and future fire
behavior (Miller et al. 2013, 2019).

Here, we focus on the effects of treatments that modify
vegetation and fuels in sagebrush ecosystems and empha-
size the longer-term consequences for fuels and fire behav-
ior. We first review the causes of altered fire regimes in
sagebrush landscapes. We then summarize literature on
treatments in sagebrush ecosystems that modify (1) shrub
fuels, (2) pinyon and juniper canopy fuels, and (3) fine her-
baceous fuels. We discuss the effects of these treatments on
fuels, fire behavior, and resilience and resistance. We con-
clude by highlighting knowledge gaps and research needs
to support implementation of current federal policies.

Factors driving altered fire regimes in sagebrush
landscapes

The primary influences on all fire regimes are climate,
topography, soils, vegetation types, and plant functional
groups (Fig. 2) (Bradstock 2010). Fire occurrence in any
given year is a function of fuels (biomass), conditioning

of those fuels for burning (fuel moisture), fire weather
(antecedent drought, wind speed and direction, etc.),
and ignitions (Fig. 2) (Bradstock 2010). Changes in fire
regimes can result from changes in the composition of
plant functional groups (Syphard et al. 2017; Bradley
et al. 2018), the amount, structure, continuity, and con-
ditioning of biomass for burning (Littell et al. 2009), and
ignitions, both human and lightning caused (Fusco et al.
2016). Fire size and severity is strongly influenced by fire
weather and fire behavior (Bradstock 2010) and ongoing
shifts in climate and fire weather are altering fire regimes
(Abatzoglou and Kolden 2013; Stavros et al. 2014).

In sagebrush ecosystems that are not influenced by
pinyon-juniper expansion, shrub and herbaceous surface
fuels interact with fire weather to influence the propen-
sity for wildfires (Fig. 3). As shrub or fine fuel loadings
increase, less severe weather conditions are required
for fire to spread (Cheney and Sullivan 2008; Rego et al.
2021). Progressive increases in woody fuels can occur
due to management actions such as fire suppression
(e.g., Minnich 2001) and increases in fine fuel loading
and continuity can occur following annual grass inva-
sion (Fig. 3) (Strand et al. 2014). Fire behavior (i.e., rate of
spread, flame length, reaction intensity) increases as fuel
moisture decreases and herbaceous fuels cure (Ellsworth
et al. 2022). Climate warming may increase extreme fire
weather conditions and reduce the influence of fuel loads
and continuity (Abatzoglou and Williams 2016).

Fuel composition, structure, and arrangement before
either a wildfire or a fuel treatment influences subse-
quent fuels and ecological conditions (Chambers et al.
2014a, b; Strand et al. 2014). Negative relationships
between abundance of native shrub (woody fuels) and
herbaceous cover (fine fuels) often occur due to com-
petition for water and nutrients (Leffler and Ryel 2012).
Following a fire or fuel treatment, increases in shrub
cover may occur over time with reestablishment and
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Ecological resilience—the capacity of ecosystems to reorganize and regain fundamental structure, processes, and functioning (i.e., recover)
when altered by stresses and disturbances, such as altered fire regimes (Holling 1973; Scheffer 2009)

Fire behavior—the manner in which a fire reacts to the influences of fuel, weather, and topography (USDA 2023)

« Flame length—the length of flames in a fire front measured along the slant of the flame from the midpoint of its base to its tip (USDA 2023)
- Fire intensity—the heat energy released during phases of a fire as determined by the amount and rate of fuel consumption (USDA 2023)
- Fire spread—the rate at which a fire moves across the landscape as influenced by factors such as the amount and arrangement of fine surface fuels,

fuel moisture, wind, and slope (USDA 2023)

« Reaction intensity—the rate of heat release per unit area of the flaming front; typically used in fire behavior models and expressed as kilowatts

per square meter per minute (Byram 1959; Keeley 2009)

Fire severity—the impacts of fire on ecological processes, soil, flora, and fauna; degree to which an ecosystem has been altered or disrupted by fire

(USDA 2023)

Fuel treatments—vegetation management treatments implemented to reduce or redistribute burnable material and decrease fire spread rates, inten-
sity, and/or severity (Reinhardt et al. 2008; Hood et al. 2022). In sagebrush ecosystems, fuel treatment objectives typically include: (1) decrease woody
or fine fuels in a manner that has reliable and durable effects on fire behavior; and (2) improve ecological resilience and resistance to nonnative invasive

plants (Miller et al. 2013, 2019)

« Cut and leave—felling pinyon and juniper trees and leaving the downed trees and slash on the site (Miller et al. 2019)
« Cut and broadcast burn—felling pinyon and juniper trees and then reducing the amount of downed wood fuels remaining on the soil surface

by broadcast burning to burn the entire area (Miller et al. 2019)

« Cut and pile burn—felling pinyon and juniper trees and then reducing the amount of downed woody fuels remaining on the soil surface by piling

and burning the downed trees and slash (Miller et al. 2019)

- Herbicides to control shrubs—applying an herbicide, typically Tebuthiuron (Spike 20P®), that kills shrubs and converts standing live shrub fuels

into standing dead fuels in the short term and to downed woody debris and duff in the long term (Ellsworth et al. 2022; Pyke et al. 2022)

« Mastication—mechanical treatment implemented to convert vertical canopy material from pinyon and juniper trees to chipped or shredded woody
surface fuel distributed across the treated area using a rotary head or horizontal drum masticator (Vitorelo et al. 2009; Kreye et al. 2014)

- Preemergent herbicides to control invasive annuals—applying an herbicide, typically Imazapic or Indaziflam (Rejuvra®), to decrease emergence
and establishment of nonnative invasive annual grasses and prevent development of annual grass fire cycles (Terry et al. 2021, Davies et al. 2019, Cour-

camp et al. 20223, 2022b, Pyke et al. 2022)

- Prescribed fire—intentionally igniting a fire in accordance with applicable laws, policies, and regulations to reduce woody fuels and/or improve eco-
logical resilience and resistance to nonnative invasive plants (Miller et al. 2013, 2019)

« Mowing—nmechanical thinning treatment implemented in sagebrush-dominated ecosystems that shifts woody fuel from the shrub canopy to the soil
surface by mowing the shrubs with a rotary cutter to a height of about 20 to 35 cm above the soil surface (Davies et al. 2012a; Derner et al. 2014; Pyke

etal. 2022)

- Targeted grazing—application of a specific kind of livestock at a determined season, duration, and intensity to accomplish defined vegetation

or landscape goals (Launchbaugh and Walker 2006)

o Dormant season targeted grazing—qgrazing by livestock during Nov-Apr with the objective of reducing fine fuels and fire spread. Used in areas
dominated by invasive annual grasses and forbs (Schmelzer et al. 2014; Perryman et al. 2020) and in areas dominated by native shrubs and herbaceous

species (Davies et al. 2021a, b, 2022)

o High-intensity targeted grazing—qgrazing of sagebrush ecosystems dominated by invasive annuals with cattle or sheep at high utilization rates
to reduce fine, herbaceous fuels and control invasive annual grasses (Diamond et al. 2009, 2012)

Pinyon-juniper expansion phases |, Il, lll—phase I: trees are present but shrubs and herbs are the dominant vegetation influencing ecological
processes; phase II: trees are codominant with shrubs and herbs and all three vegetation layers influence ecological processes; phase ll: trees are
the dominant vegetation on the site and the primary plant layer influencing ecological

processes (Fig. 6) (Miller et al. 2019)

Resistance to invasion—a function of the abiotic and biotic attributes and ecological processes of an ecosystem that limit the population growth

of an invading species (D’Antonio and Thomsen 2004)

Timelag fuels—total wildland fuels are all plant material, living and dead, that can be consumed by fire in a worst-case scenario. Dead woody fuel
is commonly separated into diameter size classes: <% in. (1-h fuel), %1 in. (10-h fuel), 1-3 in. (100-h fuel), and > 3 in. (1000-h fuel) because of the rate
at which they equilibrate with changing atmospheric relative humidity. Fuel size class influences the likelihood of consumption during fire and impacts

fire intensity, severity, and spread

growth of sagebrush and/or with removal of peren-
nial grass due to livestock grazing (Harniss and Mur-
ray 1973; Adler et al. 2005; Hanna and Fulgham 2015).
Removal of perennial grass increases soil water and
nutrient availability (Chambers et al. 2007), which can
enhance establishment and growth of sagebrush (Cham-
bers et al. 2017b, Chambers 2021).

The resilience and resistance of sagebrush ecosystems
following treatments to remove woody fuels is highly
dependent on the relative abundance of perennial native

herbaceous species (Chambers et al. 20144, b, Bansal and
Sheley 2016, Ellsworth and Kauffman 2017, Wainwright
et al. 2020, Ellsworth et al. 2024). Higher shrub cover can
increase mortality of understory perennial native herba-
ceous species if burned (Miller et al. 2013), as woody fuels
burn at higher intensities (Hulet et al. 2015). Native per-
ennial grasses are the primary competitors with invasive
annual grasses, and low cover of these species following
fuel treatments heightens the probability of invasive annual
grass density and cover increasing in areas with relatively
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low resistance (Chambers et al. 2007, 2014b; Davies et al.
2008). Low relative abundance of perennial herbaceous
species combined with dense shrub or flammable fine fuels

from invasive annual grasses, can increase recovery time,
alter species composition, and place the ecosystem at risk
of developing an invasive grass fire cycle and converting to
invasive annual grass dominance (Fig. 4).
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resilience and resistance, perennial native grasses and forbs decrease while invasive annual grasses increase. Ecosystems with high levels of shrub
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treatments that remove shrubs as indicated by the shaded area

Expansion of pinyon and juniper into sagebrush-domi-
nated ecosystems further increases woody fuel loads and
elevates the risk of high severity fire over time (Miller
et al. 2019). In intact ecosystems, succession is initiated
by wildfires that remove fire-intolerant shrubs and trees.
Postfire, the system is typically dominated by grasses
and forbs (Fig. 5) (Barney and Frishknecht 1974; Miller
and Heyerdahl 2008; Strand and Bunting 2023). Shrubs
increase over time as sagebrush establishes and root-
sprouting shrubs regrow. Establishment of pinyon and
juniper is facilitated by the shrubs, which often serve as
nurse plants for the trees (Chambers et al. 1999, 2001;
Urza et al. 2019). Pinyon and juniper trees are highly
competitive with native shrubs, grasses, and forbs for
available soil water (Roundy et al. 2020) and nutrients
(Bates and Davies 2017), as indicated by greater availabil-
ity of these resources after tree removal, and increases in
tree density and cover can cause progressive decreases in
understory species (Fig. 5) (Miller et al. 2000; Strand and
Bunting 2023). Three phases of tree expansion have been
described (Table 2, Fig. 6) (Miller et al. 2005, 2019). Rela-
tive tree dominance in the later phases of tree expansion
is highly dependent on site conditions, and phases can be
quantified using perennial cover to calculate a total tree
dominance index (TDI) (Williams et al. 2017).

Fuel loads change along a successional gradient in
areas experiencing pinyon-juniper expansion (e.g.,
Yanish 2002). In later stages of woodland development,
increased amounts of woody fuels in tree crowns and

accumulation of dead biomass in the tree canopy and
on the ground elevate the possibility of crown fires and
therefore the risk of high fire severity, which can increase
understory plant mortality and have detrimental effects
on soils (Miller et al. 2019). This effect was observed
along a successional gradient from shrub dominance to
developed woodlands characterized by mountain big
(Artemisia tridentata ssp. vaseyana) and low sagebrush
(A. arbuscula) (Fig. 7) (Strand et al. 2013). Duff and litter
that accumulate under juniper trees over time have been
shown to contribute to increased fire severity (Weiner
et al. 2016).

Recovery of pinyon-juniper expansion areas following
tree removal treatments depends on the abundance of
native perennial herbaceous species, woody fuel amount
and type, and treatment severity (Miller et al. 2019). Con-
sequently, treatments are most likely to be effective at
restoring native shrub and grass communities in phase I
and phase II which have lower tree biomass (Miller et al.
2019). There may be tradeoffs between understory res-
toration and fire risk because removal of tree and shrub
species often increases understory herbaceous continuity
and surface fuel loading (Dittel et al. 2018; Ellsworth et al.
2020; Williams et al. 2023). However, without fuel treat-
ments, continued tree growth and infilling in expansion
areas may ultimately result in a worst-case scenario—
high-intensity crown fires with little or no residual under-
story to promote recovery (Miller et al. 2019; Strand and
Bunting 2023; Williams et al. 2023).
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Fig. 5 Model of changes in percent composition of grasses, shrubs, and junipers in cool/moist mountain big sagebrush in northeastern California
over time after fire (bottom) (Miller and Heyerdahl 2008). Successional trajectories follow this pattern across sagebrush ecosystems, but the time
required to transition between stages varies by site conditions (Johnson and Miller 2006)

Treatments that modify shrub fuels

In sagebrush-dominated ecosystems with little pinyon-
juniper expansion, treatments to reduce woody shrub
fuels often include prescribed fire, mechanical thin-
ning, and herbicide applications (Miller et al. 2013,
2019). These treatments can be used to break up con-
tinuous woody cover and provide anchor points for
fire suppression (Bakker et al. 2012), increase native
grass and forb cover, and improve sagebrush habitat
(Miller et al. 2013).

Prescribed fire

Prescribed fire is used to reduce shrub fuel loads and
restore herbaceous perennial vegetation in sagebrush-
dominated ecosystems. Historically, this treatment
was widely used but due to dual concerns about pro-
tecting greater sage-grouse habitat and preventing fur-
ther spread of invasive annual grasses, its use is now
generally limited to moderate to high resilience and
resistance areas (Chambers et al 2014a, 2014b, 2017b).
Several studies evaluated the relationships among
fuel loads, environmental conditions, and fire behav-
ior during prescribed fire in big sagebrush ecosystems
(Table 3). Most burns were conducted during fairly
mild conditions (low wind and moderate tempera-
ture and humidity) and pretreatment fuels were highly

variable. A few general trends existed: rate of spread
and flame length were higher in fall burns compared
to spring burns, and flame length and rate of spread
increased with increasing pretreatment shrub cover
(Table 3, Schachtschneider 2016).

Prescribed fire can be effective at reducing total fuel
loads initially because a large portion of both shrub
and herbaceous fuels are consumed (Pyke et al. 2014;
Wozniak and Strand 2019). In Wyoming big sagebrush
sites across the long-term Sagebrush Treatment Evalua-
tion Project’s (SageSTEP) experimental network (http://
www.SageSTEP.org) (Mclver et al. 2010; Mclver and
Brunson 2014), prescribed fire reduced total fuel by more
than half (Fig. 8) (Ellsworth et al. 2022). Most persistent
fuel reductions came from removal of the shrub layer,
which only recovered to 27% of control shrub fuels after
10 years. This is consistent with slow shrub recovery fol-
lowing prescribed fire across Wyoming big sagebrush
communities (i.e., Wambolt and Payne 1986, Ellsworth
and Kauffman 2010, Reis et al. 2019). In more produc-
tive mountain big sagebrush communities with higher
resilience and resistance, shrub fuel recovery averaged
32 years in Montana (Lesica et al. 2007), though variable
recovery times (15-100 years) were reported elsewhere
(Nelson et al. 2014) due to differences in prefire site con-
ditions, interspecific interactions (Chambers et al. 2021),
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Phases of expansion — categories along a continuum

Phase | Phase Il Phase lll
100 I
L]
90 o Tree
20 ° ¢ Perennial understory

Cover (%)

T

0.5 0.6

Tree dominance index
Fig. 6 The change in tree dominance across the phases of pinyon and juniper expansion. In phase |, trees are present but shrubs and herbs
are the dominant vegetation influencing ecological processes; in phase I, trees are codominant with shrubs and herbs and all three vegetation
layers influence ecological processes; in phase lll, trees are the dominant vegetation on the site and are the primary influence on ecological
processes (Miller et al. 2005). The tree dominance index (TDI) is used as a quantitative measure of the relative dominance of pinyon and juniper
based on the proportion of tree canopy cover to the summation of shrub and perennial grass (or herb) cover and is calculated as: tree cover /

[tree + shrub +tall perennial grass cover]. Figure from Miller et al. (2019)
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—e— Immediate
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Fig. 7 Differenced normalized burn ratio (ANBR), an index of burn severity following wildfire, showing increases along a successional gradient
from sagebrush to mature juniper in a western juniper and low sagebrush (Juoc/Arar) association as well as a western juniper and mountain big
sagebrush (Juoc/Artr) association. Prefire successional stages are as follows: S1=o0pen sagebrush, S2=closed sagebrush, and juniper expansion
phase P1=phase |, P2=phase Il, P3=phase lll, and M=Mature juniper. Adapted from Strand et al. (2013)

season of burn (Ellsworth and Kauffman 2017), and site
productivity and seasonal climate (Chambers et al. 2014a;
Nelson et al. 2014).

Prescribed fire treatments often result in trade-
offs between reduction in woody fuel and increases in

herbaceous fuel (grasses and forbs) by years 2—3 follow-
ing shrub removal (Wrobleski and Kauffman 2003, Ells-
worth and Kauffman 2017, Dittel et al. 2018; Ellsworth
et al 2020, 2022). Across Wyoming big sagebrush sites
in the SageSTEP experimental network, herbaceous
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fuels were initially reduced by 40%, but exceeded that of
controls by 74, 93, 117, and 61%, in years 2, 3, 6, and 10,
respectively (Ellsworth et al. 2022) (Fig. 8). In the Sag-
eSTEP network, increases in herbaceous fuel were driven
primarily by perennial deep-rooted grasses through year
6. In year 10, perennial cover returned to control levels
and there was a concomitant increase in annual grasses
(Pyke et al. 2022).

Fuel composition depended on the resilience and
resistance (Chambers et al. 2014a), prefire plant com-
position, and disturbance history of the sites (Ellsworth
and Kauffman 2017). Sites with large amounts of invasive
grass before prescribed fire typically had high invasive
herbaceous fuel following fire and could be at risk of type
conversion to invasive grass fuel (Chambers et al. 2019).
In contrast, prescribed fire in good condition, higher
resilience sites typically had herbaceous fuels dominated
by native, deep-rooted, perennial bunchgrasses (Davies
et al. 2014; Ellsworth et al. 2016, Ellsworth and Kauff-
man 2017) and often higher postfire plant diversity (Bates
et al. 2020). In mountain big sagebrush ecosystems with
high resilience and resistance, perennial grass cover was
lower in prescribed fire than controls initially, but peren-
nial grass and forbs in burned plots were 1.5 to 2 times
greater than in unburned plots from years 2 through 12
(Davies and Bates 2020). Cover of annual grass was gen-
erally low on these sites (<4%) but was higher in burned
compared to control plots throughout the study.

Fuel Load (Mg ha')
[*)

o
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Prescribed fire changes how future wildfires move
through an area. Reduction in woody, shrub canopy fuels
typically lowers modeled fire spread rate, flame length,
and reaction intensity, a measure of the heat released by
fire per unit area (Reis et al. 2019; Ellsworth et al. 2020,
2022). Modeled fire spread 1 year after prescribed fire in
Wyoming big sagebrush was 75% lower than in untreated
controls and remained lower for 10 years (Ellsworth et al.
2022). Modeled flame lengths were reduced by 55% rela-
tive to controls in the first year after burning and were
still about 30% less than controls 10 years later. Similarly,
Reis et al. (2019) and Wambolt and Payne (1986) showed
large reductions in shrub cover following fire and slow
recovery of the sagebrush canopy after 17-18 years,
which resulted in persistent reductions in modeled fire
behavior (Reis et al. 2019).

Mowing

Mowing is a type of mechanical thinning treatment used
to alter sagebrush fuels that shifts woody fuel from the
shrub canopy to the soil surface (Ellsworth et al. 2022).
Mowing typically involves using a rotary cutter to reduce
shrub height to about 20 to 35 cm above the soil sur-
face (Davies et al. 2012a; Derner et al. 2014; Pyke et al.
2022). This type of mowing has been used to decrease big
sagebrush cover, density, or height across the sagebrush
biome (Wamboldt and Payne 1986, Watts and Wamboldt
1996, Davies et al. 2009; Swanson et al. 2016) and can

Herbaceous @Litter

mShrub O Woody

10 0

Years Since Treatment

Control Fire

Mechanical Tebuthiuron

Fig. 8 Mean herbaceous, litter, shrub, and downed wood debris (woody) fuel in control, prescribed fire, mechanical, and tebuthiuron plots 0, 1, 2,
3,6, and 10 years posttreatment at six Wyoming big sagebrush sites in the SageSTEP network. Error bars represent standard error for the total fuel

load. Figure modified from Ellsworth et al. (2022)
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reduce fuel for more than 10 years posttreatment (Ells-
worth et al. 2022; Pyke et al. 2022).

Following mowing treatments, herbaceous, downed
wood, and litter fuel components often increase (Fig. 8)
(Ellsworth et al. 2022). In the SageSTEP study, where
Wyoming big sagebrush was mowed to height of about
35 cm, shrub cover was initially about 19% and shrub
fuel was approximately 3.8 Mg ha™' (Pyke et al. 2022).
Mowing reduced shrub cover by about 50% (Pyke et al.
2022) and live shrub fuel by about 60% in the first post-
treatment year (Ellsworth et al. 2022). Ten years later,
live shrub fuel was still about 40% less than the pretreat-
ment levels. Despite live shrub fuel decreases, the woody
material generated during the mowing treatment was still
present in the system: downed woody fuel increased by
almost 60% in the year following mowing and was even
higher in year 10 (Ellsworth et al. 2022) (Fig. 8). Herba-
ceous fuel had high interannual variability (Chambers
et al. 2014b) but was significantly higher in year 10 post-
treatment than at the beginning of the study (Ellsworth
et al. 2022).

Across the SageSTEP network, mowing sagebrush
reduced modeled rates of spread from about 11 m min~*
pretreatment to 4 m min~! in the first year after treat-
ment (Ellsworth et al. 2022). Rates of spread for the mow-
ing treatment were lower than controls in year 10 but
were similar to pretreatment values. Mowing decreased
modeled flame lengths by about 1.5 m in the first year,
and flame lengths remained lower than controls in year
10. Mowing decreased modeled reaction intensity by 50%
compared to controls.

Effects of mowing on herbaceous fuels are related to
the relative abundance of fuel types prior to treatment
and the relative resilience and resistance of the site.
In the Great Basin, a comparison of 76 paired, adja-
cent unmowed and mowed areas treated between 2001
and 2010 showed that cover of native perennial herba-
ceous species was likely to be higher than cover of inva-
sive annual grasses after treatment, where the paired
unmowed areas had greater cover of perennial grass,
lacked cheatgrass, and had fewer invasive forbs (Swan-
son et al. 2016). Annual grasses and forbs increased over
time following mowing of Wyoming big sagebrush in
sites with dense shrubs and low perennial herbaceous
cover prior to treatment (Davies et al. 2011, 2012a),
as well as in relatively good ecological condition sites
across the SageSTEP network (Chambers et al. 2021;
Pyke et al. 2022). In contrast, Wyoming big sagebrush
sites in the middle Rockies treated in the early 1960s
had no increase in invasive annual herbaceous species
and showed an increase in perennial grasses and forbs
that persisted until sagebrush cover began to increase
about 10 years later (Wamboldt and Payne 1986). Also,
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in dense mountain big sagebrush sites in the Northern
Basin and Range ecoregion with sagebrush cover rang-
ing from 26 to 34% and perennial grass densities averag-
ing 25 individuals/m?, there was no increase in invasive
annual grass, and herbaceous cover, density, and produc-
tion increased significantly compared with untreated
controls (Davies et al. 2012b).

Herbicides

Herbicides that reduce sagebrush cover convert standing
live shrub fuels to standing dead fuels in the short term
and to downed woody debris and duff in the long term
(Fig. 8) (Ellsworth et al. 2022; Pyke et al. 2022). One of the
few herbicides that is still used occasionally to reduce or
remove shrub fuels is Tebuthiuron (Spike 20P®), a nonse-
lective herbicide that inhibits photosynthetic activity and
kills woody plants. Native grasses and forbs, as well as
sagebrush, can be reduced when the herbicide is applied
at relatively high rates (0.6 to 1.1 kg ai ha™') (Whitson
1982; Whitson and Alley 1984).

Research at various sites showed that Wyoming big
sagebrush cover decreased progressively with increasing
rates of tebuthiuron; 0.11 to 1.1 kg ha™! active ingredient
(Wachocki et al. 2001, Olsen et al. 2002, McDaniel et al.
2005). Tebuthiuron applications resulted in long-term
increases in native perennial grasses (fine fuels) in areas of
the sagebrush biome that receive relatively more summer
precipitation and have a higher proportion of warm season
grasses, including the Big Horn Basin of Wyoming (Olsen
et al. 2002) and northern New Mexico (McDaniel et al.
2005). Increases in annual grasses occurred at only a few
sites and were attributed to environmental conditions and
species composition prior to treatment. Although species
richness did not appear to be reduced, gradual shifts in spe-
cies composition occurred (Olsen and Whitson 2002) with
unknown effects on ecosystem functioning. Rates of sage-
brush (shrub fuel) recovery following treatment depended
on environmental conditions. Applications of tebuthiuron
to mountain big sagebrush sites in Utah resulted in the
expected, short-term decrease in sagebrush, low to mod-
erate increases in perennial grasses, and on sites with low
initial perennial grass cover, large increases in weedy forb
species (Wachocki et al. 2001, Dahlgren 2006).

In Wyoming big sagebrush SageSTEP sites, tebuthiuron
(1.68 kg ha™! active ingredient) was applied aerially and
had a delayed effect on shrub response (Pyke et al. 2022).
No effects on fuels were observed until year 6 when the
initial live shrub fuel (54 Mg ha™') declined by about
50% (Fig. 8) (Ellsworth et al. 2022). Downed woody fuel
increased as shrub mortality progressed and was greater
than half of the total fuel load in year 10. Herbaceous
fuels were highest in year 10 and were composed primar-
ily of cheatgrass and annual forbs (Pyke et al. 2022). Litter
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fuels changed little over time. The tebuthiuron treatment
had no effect on modeled rate of fire spread, flame length,
or reaction intensity (Ellsworth et al. 2022). The increase
in shrub ground fuels may contribute to more smoldering
rather than flaming combustion and increase fire severity
due to increased duration (Weiner et al. 2016).

Tradeoffs of shrub fuel treatments

Effects of treatments designed to modify shrub fuels on
vegetation and fuel structure, fire behavior, and ecologi-
cal response provide implications for fire management
(Table 4). Our review indicates that prescribed fire is the
most effective treatment at reducing total fuel load (Ber-
nau et al. 2018; Ellsworth et al. 2022) and thus the likeli-
hood of severe wildfire effects. Mowing had shorter-term
effects on total fuel loads and modeled fire behavior but
reduced reaction intensity for 10 years (Ellsworth et al.
2022). Tebuthiuron had no effect on either fuel load or
modeled fire behavior (Ellsworth et al. 2022). All treat-
ments increased herbaceous fuels; these were dominated
primarily by annual invasive fuels in relatively warm and
dry Wyoming big sagebrush sites and by perennial native
grass and forb fuels in cooler and moister mountain big
sagebrush sites (Davies et al. 2012b; Swanson et al. 2016).
These findings indicated that prescribed fire followed by
mowing are likely the most durable treatments because
of longer-term (10-year) effects on fuels and/or fire
behavior.

Ecological tradeoffs among the three treatments include
effects on the posttreatment plant community and habi-
tat for sagebrush-obligate species. The ecological site and
plant community’s inherent resistance to invasion and
ecological condition largely determined treatment out-
comes. Warm and dry sites with relatively low resilience
and resistance were susceptible to invasion by annual
grasses and forbs and tended to recover slowly (Davies
et al. 2012a), even with relatively high initial amounts
of competitive perennial grasses (Pyke et al. 2022). The
invaders were most abundant after prescribed fire likely
due to shrub mortality and an immediate release of water
and nutrient resources (Roundy et al. 2020). Regardless
of treatment, cooler and moister sites with relatively high
resilience and resistance had increases in perennial native
herbaceous species and limited invasion, except in dense
shrublands with depleted understories. The relative cover
of sagebrush and perennial herbaceous species strongly
influence resilience to treatments (see Fig. 4) and should
be a primary consideration in selecting treatment sites and
posttreatment management strategies.

Loss of sagebrush can decrease habitat quality in areas
managed for sagebrush-obligate species (Pyke et al
2022). Fire is lethal to many species of sagebrush and high
mortality can occur depending on how and when fire is
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applied (Miller et al. 2013). In areas with relatively high
resilience, implementing patchy and incomplete burns
that mimic historical fire patterns may prevent over-
dense sagebrush stands and help maintain habitat (Ells-
worth et al. 2016). Mowing can affect habitat if sagebrush
height is below the requirements for sagebrush obligates
like greater sage-grouse (Pyke et al. 2022). In addition, it
is likely that mowing and tebuthiuron can affect habitat if
downed woody debris and increases in invasive annuals
impede wildlife.

Treatments that modify pinyon and juniper fuels

In sagebrush ecosystems experiencing pinyon-juniper
expansion, treatments are used to decrease or redistrib-
ute canopy fuels with the objective of reducing fire risk
or behavior (Miller et al. 2005). These treatments often
increase the relative abundance of shrubs and/or native
herbaceous species by reducing competition from trees.
Common fuel treatments used in these ecosystems
include prescribed fire and mechanical treatments —
cutting the trees and leaving them in place, cutting and
broadcast burning the slash, cutting and pile burning the
slash, and masticating or shredding trees and leaving the
debris in place (Miller et al. 2019). Available studies focus
largely on the Northern Basin and Range, Central Basin
and Range, and Snake River Plain ecoregions.

Prescribed fire

Effects of prescribed fire on short- and long-term fuel
characteristics and future fire behavior depend on woody
debris and canopy fuel consumption during the burn and
subsequent understory vegetation response. Prescribed
fire often reduces tree canopy cover (Miller et al. 2005;
Rau et al. 2010; Davies et al. 2019), which can lower the
risk of high-intensity crown fire and subsequent ecosys-
tem losses (Williams et al. 2023). For example, a spring
prescribed burn reduced canopy biomass by 56% and
1-h canopy fuels by 90% in a pinyon-juniper woodland
(Rau et al. 2010). In the SageSTEP sites, pinyon and juni-
per density remained>90% lower than untreated sites
10 years after burning (Wozniak and Strand 2019). Can-
opy loss typically increased with increasing pretreatment
canopy cover and higher fire intensity (Strand et al. 2013;
Bates et al. 2017; Wozniak and Strand 2019). Across west-
ern (Juniperus occidentalis) and Utah juniper (Juniperus
osteosperma) sites, fuel reduction targets were most often
met with 100% blackening and low-intensity prescribed
fire (Bourne and Bunting 2011).

Prescribed burning in pinyon and juniper woodlands
also decreases existing downed woody debris, especially
1- and 10-h fuels, although these effects vary across
vegetation types and woodland phase and with time
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since treatment (Young et al. 2015; Bernau et al. 2018).
Remaining downed woody debris may decrease over time
as weathering breaks down charred surface 10-h fuels
into smaller fuel classes in the first years after treatment
(Young et al. 2015). However, burning often increases
surface woody 100-h fuels when unconsumed branches
from standing trees collect on the ground, especially in
sites with high pretreatment canopy cover (Williams
et al. 2023; Bernau et al. 2018; Young et al. 2015). This
increase in 100-h fuels can result in an overall increase of
downed woody debris after prescribed fire, especially in
phase III woodlands (Fig. 9) (Williams et al. 2023). In the
SageSTEP plots, changes in fire behavior after prescribed
fire and cut and leave treatments were modeled using the
Fuel Characteristic Classification System (FCCS) in the
Fuel and Fire Tool (FFT) (Prichard et al. 2013). Follow-
ing prescribed fire treatments, the modeled rate of fire
spread increased by 21-fold and flame lengths were 1.0 m
higher than controls at year 10 regardless of phase (Wil-
liams et al. 2023).

Although often undesirable for sagebrush-obligate spe-
cies, reductions in shrub and sagebrush cover following
prescribed fire are common (Williams et al. 2017, 2020;
Bernau et al. 2018). Decreases in shrubs can contribute to
decreased flame lengths and fire intensity for a time after
prescribed fire (Ellsworth et al. 2022) but increases in
downed woody fuels coupled with recovery of understory
shrubs and herbaceous fuels can increase fire behavior and
effects longer-term. While sprouting shrubs can increase
to above pretreatment cover within 5 years of prescribed
burning (Huffman et al. 2013; Williams et al. 2017), sage-
brush recovery depends on site conditions and can take
decades to return to prefire levels (Pieper and Wittie 1990;
Urza et al. 2017, 2021). However, in more productive
mountain big sagebrush sites with a seed source, burning
can promote sagebrush establishment (Davies and Bates
2016; Chambers et al. 2017b).

Woody fuel treatments can have unintended conse-
quences for future fire characteristics if prescribed fire
increases fine fuel loads and continuity. Prescribed burn-
ing in woodlands generally decreased herbaceous veg-
etation 1-2 years posttreatment followed by increases in
years 3—10 (Young et al. 2015; Bernau et al. 2018). How-
ever, responses varied depending on fire characteristics
(e.g., season of burn and fire intensity), woodland phase,
time since burning, and site characteristics. In burned
western juniper woodlands, herbaceous cover was 200—
250% higher than in unburned controls 3—6 years post-
fire (Bates et al. 2019). Live fine fuel loading was 300
to>400% higher 2 and 10 years following treatment in
pinyon and juniper expansion areas across the SageSTEP
sites with the greatest proportionate increases occur-
ring with the highest pretreatment canopy cover (Bernau
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et al. 2018; Wozniak and Strand 2019; Wozniak et al.
2020). Burning increased invasive annual herbaceous
cover to varying degrees in these woodlands initially but
perennial tall grasses increased across pretreatment can-
opy covers by 3—6 years following treatment (Miller et al.
2014; Williams et al. 2017).

Annual grass invasion following prescribed burning
can increase fine fuel loads and continuity, particularly
on warmer and drier pinyon-juniper expansion sites with
lower resilience and resistance (Chambers et al. 2014b).
Canopy removal, soil disturbance, and increased soil
moisture and nutrients following woody fuel reduction
can elevate both perennial native and invasive annual
grass growth and reproduction (Zouhar et al. 2008; Ross
et al. 2012; Bates et al. 2017; Roundy et al. 2020) leading
to higher fine fuel loads. In the SageSTEP sites, cheat-
grass cover was generally higher in prescribed fire than
untreated or cut and leave sites (Freund et al. 2021).
In warmer and drier burned sites, cheatgrass cover
increased from 3 to 10 years after treatment and as pre-
treatment tree cover increased (Freund et al. 2021).
Cooler and moister SageSTEP sites generally had lower
cover of cheatgrass after prescribed fire, particularly with
high pretreatment tree cover (~20%) where increases in
perennial native grasses appeared to offset increases in
cheatgrass (Freund et al. 2021). In contrast, in relatively
cool and moist phase II western juniper sites, bunchgrass
declined initially by 78% after prescribed fire but recov-
ered over time; in phase II sites, bunchgrass decreased
by 95% and the site was dominated by cheatgrass in years
3-9 after fire (Bates et al. 2011, 2013).

Cut and leave

Cut and leave treatment involves cutting individual trees
and leaving them on the site. Cutting of standing trees
reduces the risk of crowning and torching in a future
wildfire (Williams et al. 2023). However, cut trees left on
the site significantly increase the woody fuel load of the
site, potentially altering future surface fire behavior and
effects (Fig. 9) (Bernau et al. 2018; Wozniak and Strand
2019; Williams et al. 2023). Two years after treatment
of SageSTEP woodland sites, no increase in 10-h woody
fuel load was detected in phase I, while 10-h woody fuels
were 36—141% higher in phase II sites; in phase III wood-
lands, 10-h woody debris approximately doubled in west-
ern juniper and pinyon-juniper and increased fourfold
in Utah juniper (Bernau et al. 2018). Woody fuels of the
100-h size class increased by a factor of 1.5 in phase I,
two- to fourfold in phase II, and four- to five-fold in phase
III (Bernau et al. 2018). Ten years after treatment of Sag-
eSTEP woodland sites, average downed woody fuel loads
were higher on treated sites: 8.4 Mg ha™'in treated phase
I woodlands compared to 3.4 Mg ha™! pretreatment, and
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Fig. 9 The response of surface fuels to prescribed fire and a mechanical cut and leave treatment averaged across ten sites within the SageSTEP
woodland network in Oregon, northern California, Nevada, and Utah. Shown are the mean shrub, herbaceous, litter, and downed woody fuel (Mg
ha™') in control (top), prescribed fire (center), and mechanical treatment (bottom) plots for woodland phases | (left), I (center), and Ill (right) in years
0,1,2,3,6,and 10 posttreatment. Total surface fuels averaged 6.23 Mg ha™' across all plots prior to treatments and did not change by year 10
in control plots. In contrast, total surface fuels were 11.13 Mg ha™' across prescribed fire plots (p <0.01) and 21.9 Mg ha™' across mechanical plots

(p<0.01) in year 10. Figure from Williams et al. (2023)

26.7 Mg ha™! in treated phase III woodlands compared to
4.4 Mg ha™! pretreatment (Williams et al. 2023).

Live shrub fuels increase over time following cut and
leave treatments in expanding woodlands. No differ-
ences existed in shrub fuel loads between cut and leave
and untreated controls 2 years after treatment across the
SageSTEP sites (Bernau et al. 2018). After 10 years, shrub
fuel loads averaged 4.5 Mg ha™! compared to 3.2 Mg ha™!
pretreatment in phase I woodlands and more than dou-
bled in phase III woodlands, increasing from 0.8 to
1.9 Mg ha™! (Williams et al. 2023).

Treatment response in herbaceous fuels can vary over
time. In the SageSTEP study, significant increases in her-
baceous fuels occurred 2 years following cut and leave
treatments in phase II and III woodlands, but no change
was detected in phase I woodlands (Bernau et al. 2018).
Ten years posttreatment, herbaceous fuels increased
from 0.30 Mg ha™! pretreatment to 0.56 Mg ha™! in phase
I woodlands and from 0.16 to 0.52 Mg ha™! in phase III
woodlands in this study (Williams et al. 2023).

The large increase in surface fuels following cut and
leave treatments in SageSTEP sites resulted in increased
modeled fire behavior (Fig. 10) (Williams et al. 2023).
Across all 10 SageSTEP sites, modeled flame length at
50th percentile windspeeds increased 3.8-fold and fire
rate of spread increased 15-fold compared to pretreat-
ment and untreated controls (Williams et al. 2023). At
80th percentile windspeeds, reaction intensity projec-
tions in cut and leave treatment plots were double that
of control plots 10 years after treatment when fully
cured herbaceous fuels were assumed. While there were
increases in surface fire behavior with cut and leave
treatments, crown fire risk was eliminated with both
prescribed fire and mechanical treatments for at least
10 years posttreatment.

Most studies reported increases in perennial under-
story vegetation following cut and leave treatments
(Miller et al. 2019). Cutting increases the nutrients and
soil water on the site and can lengthen the growing
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season by two or more weeks (Bates et al. 2000, 2017;
Roundy et al. 2014b, 2020). Invasive annual grasses
may increase after cutting treatments, especially on
warmer and drier sites with relatively low resistance
to invasion (Bates et al. 2000, 2017; Miller et al. 2014;
Roundy et al. 2014a).

In late woodland development phases, cut and leave
treatments can smother perennial understory vegetation
leading to mortality (Miller et al. 2019). Large amounts of
woody fuels increase risk of smoldering, soil heating, and
additional plant mortality should a wildfire occur. Smaller
trees (<0.5 m) are generally left untreated which allows
the woodland to regenerate quicker than after prescribed
burning which kills most seedlings. However, regenera-
tion is generally slow in the Great Basin and average tree
cover was< 1% 10 years after treatment in phase I and II
woodlands and 1-2% 10 years after treatment in phase III
woodlands (Wozniak and Strand 2019).

Cut and slash burning

Cut and slash burning treatments involve felling the trees
and then reducing the amount of downed wood fuels
remaining on the soil surface by (1) piling and burn-
ing the downed trees and slash (cut and pile burn) or (2)
broadcast burning the downed trees and slash (cut and
broadcast burn) (O’Connor et al. 2013; Bates et al. 2014,
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2016, 2017; Redmond et al. 2014). Differences exist in the
effects of removal of pinyon-juniper slash by pile burning
or broadcast burning on subsequent fuels, fire behavior,
and ecological responses.

There is little research on how cut and slash manage-
ment treatments alter fuel loads and especially poten-
tial fire behavior in expansion woodlands. As a rough
approximation of the difference in fire behavior between
cut and leave treatments in the SageSTEP network and
potential cut and pile burn treatments, we first modeled
fire behavior using actual fuels data from cut and leave
treatments. We then removed 90% of downed wood
fuels of all size classes from the model inputs to approxi-
mate cut and remove treatments and re-ran the model
simulations. Results suggested that the modeled rate of
spread increases slightly relative to untreated controls by
removing downed woody fuels (Fig. 10A), likely due to an
increase in herbaceous and shrub fuels over time. How-
ever, modeled reaction intensities are likely lower in cut
and pile burn treatments relative to cut and leave treat-
ments (Fig. 10B), which could reduce treatment severity
(Haskins and Gehring 2004).

In cut and pile burn treatments, the relative resilience
and resistance of the sites are primary determinants of
treatment outcomes. In a cool and moist site with moun-
tain big sagebrush and Idaho fescue experiencing western
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Fig. 10 Simulated differences in rate of spread (A) and reaction intensity (B) between cut and leave (red), cut and remove (blue) and untreated
control (green) treatments in sagebrush ecosystems experiencing pinyon and juniper expansion. Field data used in modeling was from the
SageSTEP network treatment plots at time O (pretreatment) and years 1, 3, 6, and 10 posttreatment. Fire behavior modeling used the Fuel
Characteristic Classification System (FCCS) in the Fuel and Fire Tool (FFT) (Prichard et al. 2013). Figure adapted from Williams et al. (2023)
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juniper expansion, a cut and pile burn had higher cover of
the perennial grasses, Sandberg bluegrass (Poa secunda)
and large bunchgrasses than a broadcast burn 4 years
after treatment (O’Connor et al. 2013). The cut and pile
burn also had slightly lower cover of cheatgrass, although
neither site had cover above 6% (O’Connor et al. 2023).
Following cut and pile burning in a warmer and drier big
sagebrush site with western juniper expansion in cen-
tral Oregon, sites with relatively high invasive annual
grass abundance pretreatment showed large increases in
invasive annual grasses in both pile disks and skid trails
(Kerns and Day 2014). Seeding with native species (cul-
tivar, locally sourced, and no seed) were not effective in
mitigating the increase in invasive grass (Kerns and Day
2014) reflecting the difficulty of establishing native spe-
cies following cut and pile burn treatments in these
warmer and drier ecosystems (Havrilla et al. 2017).

The persistence of downed woody material where
pinyon and juniper are cut without follow-up burning of
either distributed slash or slash piles may have implica-
tions for tree regeneration and treatment durability. In
northeastern Oregon, there was a twofold increase in
juniper seedlings and saplings beneath unburned juniper
piles (Dittel et al. 2018). Winter burns and unburned sites
left saplings (< 1.5 m) and seedlings, but higher-intensity
spring and early fall burns following cut treatments effec-
tively controlled juniper regeneration through 5 years
posttreatment (Bates et al. 2014).

Broadcast burning, like prescribed fire, is often a more
severe treatment than pile burning because of decreases
in fire-intolerant species, like A. tridentata, and the
potential for larger and more immediate increases in soil
resources that can promote invasion by annual grasses
and forbs (O’Connor et al. 2013; Bates et al. 2017). In a
cool, wet big sagebrush-Idaho fescue association and a
warm dry big sagebrush-bluebunch wheatgrass asso-
ciation in southeast Oregon, increases in inorganic N
(NO,;, NH,*), phosphorus (H,PO, "), and potassium (K*)
occurred in both cut and leave and cut and broadcast
burn treatments, but the increases were delayed for cut
and leave (Bates et al. 2017). The increases in N, P, and
K tended to occur within the first 2 years for treatments
conducted in April and September and were greatest in
severely burned debris and canopy zones (Bates et al.
2017). Other studies indicate that responses to treat-
ments may also be influenced by greater solar radiation at
the soil surface, which may increase establishment micro-
sites (Redmond et al. 2014) and decreases in soil aggre-
gate stability, an indicator of overall soil quality (Ross
et al. 2012). In the southeast Oregon study, soil inorganic
N concentrations were positively correlated with invasive
annual grass cover (Bates et al. 2017).
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The vegetation response and thus fuel composition
following cut and broadcast burn treatments is highly
dependent on treatment timing and fire severity. In the
Oregon study above, the cool, wet big sagebrush-Idaho
fescue association was generally resistant to annual
grasses after juniper removal treatments with native
plants dominating even in the highly impacted debris
and canopy zones of a higher severity September burn
4 (O’Connor et al. 2013) and 7 years (Bates et al. 2016)
posttreatment. In contrast, the warm dry big sagebrush-
bluebunch wheatgrass association had lower resistance
and resilient; thus, invasive annual grasses were a major
component of the understory especially when tree and
slash burning was high severity (Bates et al. 2016). Simi-
larly, relatively warm, two needle pinyon (Pinus edulis)
and Utah juniper sites on the Colorado Plateau showed
a flush of annual invasive forbs 2 years after broadcast
burning and seeding treatments (Redmond et al. 2014).
In the Oregon study, broadcast burns conduced in April
and September resulted in moderate to high fire severity
in stump and felled tree zones; all fuels up to the 1000-h
fuel class were consumed and herbaceous perennials
were largely eliminated (Bates et al. 2014, 2016). In con-
trast, burning in January, when fuel moisture and relative
humidity were high and temperatures cooler, reduced
disturbance severity in stump and felled tree zones,
which maintained perennial herbaceous understories
and prevented or limited the presence of invasive annuals
(Bates et al. 2014, 2016).

Mastication

Mastication treatments convert vertical canopy mate-
rial from trees to chipped or shredded woody surface
fuel distributed across the treated area (Vitorelo et al.
2009; Kreye et al. 2014). Two types of masticators
are common, the rotary head and horizontal drum
(Vitorelo et al. 2009). The primary objective of masti-
cation is to reduce vertical fuel continuity and crown
fire potential with the expectation of reducing fireline
intensity, rate of spread, and flame length (Kreye et al.
2014). Masticated fuels have a high concentration of
compacted 1-h (size class<0.64 cm) and 10-h (0.64—
2.54 ¢cm) woody fuel particles (Kane et al. 2009; Knapp
et al. 2011; Kreye et al. 2011). Fuel moisture and drying
of the fuels may be highly variable given the variability
in particle size, compaction, and depth within the fuel-
bed (Jin and Chen 2012).

Changes in shrub and herbaceous fuels after mas-
tication are closely related to pretreatment tree cover
(Young et al. 2015; Wozniak et al. 2020). In pinyon-juni-
per expansion areas in Utah, both shrub and herbaceous
fuel loads increased across pretreatment tree covers
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ranging from 10 to 40% in 1 to 10 years posttreatment
(Fig. 11) (Wozniak et al. 2020). The increases in herba-
ceous fuels were due to increases in both cheatgrass and
perennial native grasses and forbs. In Utah juniper sites
in Utah, masticated sites had lower seedling establish-
ment of a native perennial grass (bluebunch wheatgrass;
Pseudoroegneria spicata) and cheatgrass likely due to
increased cover from masticated-juniper debris (Young
et al. 2013a). However, both species had more tillers and
greater biomass than the untreated controls due to higher
soil water and available nitrogen compared to untreated
controls (Young et al. 2013b; Roundy et al. 2014b).

Mastication increases woody fuel loadings on the soil
surface, particularly if the treatment is implemented
in later woodland expansion phases (Fig. 11, Table 5).
Mean woody fuel load in untreated phase I stands was
5.7 Mg ha™?! for pinyon-juniper stands, 5.2 Mg ha™! for
Utah juniper stands and 3.6 Mg ha™! for western juni-
per stands (Wozniak and Strand 2019). Masticated fuels
decreased over time and the fuel properties changed as
the fuelbed aged. Ten years after mastication in pinyon-
juniper woodlands in Utah with initial tree cover of
5-15%, the 1-h woody fuels decreased from 3.4+2.2 to
0.9+0.8 Mg ha™!, with tree cover of 15-25% the decrease
was from 7.0+4.5 to 2.2+ 1.4 Mg ha™!, and with 25-50%
tree cover, it was from 10.9+4.5 to 3.1+2.1 Mg ha™
(Table 5) (Wozniak et al. 2020). No significant decreases
in 10, 100 or 1000-h fuels were observed over the 10-year
period (Table 5).

Kreye et al. (2014) summarized fire behavior when
burning masticated conifer and shrub fuels in the labo-
ratory and field. Flame lengths in the laboratory ranged
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from 0.12 to 1.70 m with longer flame lengths associated
with lower fuel moisture (range 2.5-16.0%) and greater
fuel load (range 10 to 169 Mg ha™!) indicating that fuel-
bed load, depth, and bulk density impact fire behavior
(Kreye et al. 2013). Similar flame lengths (0.26 to 1.88 m)
were reported when burning masticated fuelbeds in field
settings (Kreye et al. 2014) with higher variability due to
differences in wind speed, additional fuels such as her-
baceous or shrub patches, and variable ages of the fuel
beds. Higher flame lengths (>2.5 m) were observed when
standing shrubs or herbaceous vegetation occurred in the
burn (Kreye and Kobziar 2015) or at higher wind speeds
(Moore et al. 2020). In the field, rates of fire spread on
masticated sites varied between 0.44 and 5.9 m min~! for
headfires, while backing fires were orders of magnitude
slower (0.06-0.09 m min~') (Kreye et al. 2014). Differ-
ences between fire rate of spread and fuel and fire char-
acteristics were difficult to discern because of varying
conditions (wind speed, relative humidity, fuel loading,
fuel bed depth, and fuel moisture).

Masticated fuels observed during wildfires suggest
that they burn at lower intensity and at slower rates
than untreated fuels (Kreye et al. 2014), thereby perhaps
enhancing fire suppression efforts. Difficulties during
holding and mop-up can occur because of the longer
duration of combustion and increase in smoldering and
smoke production (Bass et al. 2012; Kreye et al. 2014).
High winds can blow burning masticated particles across
firelines (Bass et al. 2012). Prolonged smoldering has
been observed to increase duff consumption, soil heat-
ing, and root injury. For example, Busse et al. (2005) doc-
umented that masticated fuel depths of 7.5 cm or greater
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45 1 1.5 1 L. 31
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Fig. 11 Model-based estimates of the tree litter + duff, herbaceous, and shrub median fuel loads (Mg/ha) across a gradient of pretreatment
tree cover at 1, 6, and 10 years after mastication. Data are for sites along a north to south gradient in western Utah experiencing Utah juniper
and Colorado pinyon pine expansion. The mean (+ SE) increase was 413.4 £ 110.4% in herbaceous fuel load and 232 £61.4% in shrub fuel
load from 1 to 10 years posttreatment. Note: tree litter + duff fuel loads were not collected (nor estimated) at 6 years posttreatment. Figure

from Wozniak et al. (2020)
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Table 5 Means+ standard deviations of fuel loads (Mg ha™"), bare ground cover (%), and tree density (stems ha™') within mastication
plots with tree cover ranges of 5-15%, 15-25%, and 25-50%. Data are for sites along a north to south gradient in western Utah
experiencing Utah juniper and Colorado pinyon pine expansion. From Wozniak et al. 2020

Response variable Years posttreatment

Pretreatment tree cover range (%)

1-h DWD fuel load (Mg ha™") 1

5-6
10
10-h DWD fuel load (Mg ha™") 1
5-6
10
100+ 1000-h DWD fuel load (Mg ha™") 1
5-6
10
Tree litter + duff (Mg ha™) 1
5-6
10
Herbaceous fuel load (Mg ha™") 1
5-6
10
Shrub fuel load (Mg ha™) 1
5-6
10
Total fuel load (Mg ha™") 1
5-6
10
Bare ground cover (%) 1
5-6
10
Tree density (stems ha™') 1
5-6
10

5-15 15-25 25-50
339+2.16 7.04+4.46 10.87 £4.49
1.67+1.59 3.68+2.87 538+1.68
0.89+0.81 223+144 3.12£2.06
1.93+1.11 444+1.70 6.62+2.22
217£1.16 3.68+1.89 4.46x2.15
257+228 3.98+2.23 546+2.96
1.37£213 159+2.84 4.01+295
0.56+0.62 1.24£1.61 2.58+3.27
0.94+1.05 1.90£3.07 3.70£3.60
527+2.72 10.59+3.03 15.96+6.82
0.34£0.59 0.33£043 0.53£1.02
0.72+0.28 0.37+0.20 0.30+0.20
0.65+0.29 0.60+0.39 0.70+0.40
1.02+035 143+0.64 1.20+042
1.84+1.62 0.86+0.70 0.29+0.51
2.16£1.60 1.69+1.21 0.39+033
2.66+1.95 1.68+1.31 0.76+0.58
14.53+538 2443+7.74 3238%11.17
8411483 1202712 13.23+7.07
27.57+1137 30.51+8.84 2842£791
22.68+6.09 21.29+7.31 17.93+9.40
2298+6.98 20.13£5.58 17.04+536
91.8+85.1 816+91.2 779+111.7
20291769 17031723 161.1+187.7
219.7+161.6 193.6+190.3 159.2+2079

could produce temperatures above 60 °C, the lethal tem-
perature threshold for plants, as deep as 10 cm below the
soil surface.

Tradeoffs of pinyon and juniper fuel treatments

Synthesizing effects of treatments to reduce pinyon
and juniper fuels on vegetation and fuel structure, fire
behavior, and ecological response provides implica-
tions for fire management (Table 6). All treatments
were effective at reducing tree canopy cover and lower-
ing the risk of high-intensity crown fire. Prescribed fire
reduced surface fuel loads in phase I and II woodlands
for up to 10 years and can decrease modeled fire inten-
sity in phase I for 10 years and in phase II for 3—6 years
(Williams et al. 2023). Cut and broadcast burn may have
similar effects depending on season of burn (Bates et al.
2016). A tradeoff for all treatments is that increases in

shrub and especially herbaceous fuels following tree
removal can elevate the rate of fire spread (Williams
et al. 2023). Increases in herbaceous fuels were often
largest in prescribed fire treatments. Compared to other
treatments, cut and leave greatly increases surface fuels
with progressively larger increases from phase I through
phase III. The increase in woody surface fuels and to a
lesser degree herbaceous fuels increases modeled fire
intensity, flame length, and especially rate of spread in
cut and leave treatments (Williams et al. 2023). Cut and
pile burn treatments appear to be a better option than
cut and leave due to reduced canopy and woody surface
fuels, except in the early phases of tree expansion where
cut and leave treatments have less effect on fuels and
fire behavior. In cut and pile burn treatments increases
in both shrub and herbaceous fuels occur over time
and are associated with potential increases in surface
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fire intensity, flame length, and rate of spread relative
to untreated controls. Mastication results in a high
abundance of compacted 1- and 10-h woody fuel sur-
face fuels. These fuels appear to burn at lower intensity
and at a slower rate (Kreye et al. 2014), but prolonged
smoldering may result in increased duff consumption,
soil heating, and root injury (Busse et al. 2005).

Posttreatment vegetation response depends on pretreat-
ment cover of trees and shrubs, cover and composition
of herbaceous vegetation, and ecological site character-
istics (Chambers et al. 2014a; Miller et al. 2014, 2019).
Prescribed fire and cut and broadcast burn, especially in
fall, are more severe treatments because of the loss of fire-
intolerant shrubs and potential mortality of native bunch-
grass, which can result in the largest increases in invasive
annuals (Bates and Davies 2016; Chambers et al. 2021).
Treatment outcomes are generally most favorable (1)
where resilience and resistance of the site is categorized
as moderate or higher, (2) in expansion phases I and II,
and (3) where sufficient perennial grasses and forbs exist
to outcompete invasive annuals and promote recovery
(Miller et al. 2014, 2019; Bates and Davies 2016; Cham-
bers et al. 2017a, 2017c¢, 2023c; Crist et al. 2019).

Cut and leave, cut and pile burn, and mastication are
less severe treatments ecologically than prescribed fire
and cut and broadcast burn because the understory
shrubs and perennial herbaceous species are left intact
(Chambers et al. 2021). Recovery of the understory is
still greatest in the early phases of woodland expansion
and with adequate native perennial herbaceous species
(Miller et al. 2019). In addition, treatment is possible in
sites with moderately low as well as higher resilience and
resistance because of the intact understory (Miller et al.
2019; Chambers et al. 2023c).

All mechanical treatments have tradeoffs. Cut and leave
treatments in expansion phases II and III can decrease
the longer-term ecological integrity of the site due to
large increases in woody surface fuels (Fig. 9) and risk of
high severity fire but these effects are minimized in phase
I (Williams et al. 2023). Increases in invasive annuals
may be promoted by cut and broadcast burn treatments
as a result of broadcast burning of slash (O’Connor et al.
2013) and by cut and pile burn due to skid trails or pile
burns requiring pretreatment assessment of relative
resistance to invasive annuals and possibly posttreatment
seeding (Redmond et al. 2014). Mastication may result in
smothering residual plants and reducing seedling estab-
lishment in shredded piles, and like the other treatments,
increase the potential for invasive plants due to competi-
tive release again requiring pretreatment assessment of
site conditions and potentially posttreatment seeding
(Young et al. 2013a).
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Treatments that modify annual herbaceous fuels
Treatments to reduce invasive annual grasses and thus
fine fuels have been conducted primarily in Wyoming
big sagebrush ecosystems and include targeted graz-
ing by livestock as well as preemergent herbicide treat-
ments. Targeted grazing is the application of a specific
kind of livestock at a determined season, duration, and
intensity to accomplish defined vegetation or landscape
goals (Launchbaugh and Walker 2006). In sagebrush
landscapes targeted grazing with cattle or sheep can
be used to reduce fine, herbaceous fuels and to control
invasive annual grasses. Targeted grazing has the poten-
tial to alter landscape-scale fire behavior by creating fuel
breaks, increasing the safety and effectiveness of fire-sup-
pression operations, and decreasing the extent of wildfire
spread (Maestas et al. 2016a, b; Shinneman et al. 2019).
Preemergent herbicides can be used to reduce fine fuels
by decreasing establishment of invasive annual grasses
and forbs (Pyke et al. 2014).

Targeted grazing

High-intensity targeted grazing is typically used in areas
dominated by annual grasses to reduce herbaceous fuel
loads (Diamond et al. 2009, 2012). High-intensity spring
grazing by cattle removed 80 to 90% of cheatgrass bio-
mass (Diamond et al. 2009, 2012) and by sheep removed
71 to 83% of all fine fuels (Mosley 1996). The decreases
in cheatgrass biomass due to a single year of cattle graz-
ing reduced flame length and rate of spread and a second
year of grazing reduced biomass and cover to the degree
that the fuels no longer carried fire (Diamond et al.
2009). The cheatgrass seed bank was reduced by spring
grazing, but spring grazing followed by fall burning was
more effective than either treatment alone in reducing
seed bank density (Diamond et al. 2012).

Dormant season targeted grazing (Nov—April) can
be used to reduce herbaceous fuels and fire spread
during subsequent fire seasons (Schmelzer et al. 2014;
Davies et al. 2021a, b, 2022). Autmn grazing in areas
dominated by invasive annual grasses removed sig-
nificant amounts of cheatgrass standing crop (79, 80,
79, and 58%) over four successive years with variable
precipitation (Schmelzer et al. 2014). Cumulatively,
0.675 Mg ha™! were removed reducing the fuels car-
ried over to the next year. Although fall grazing did
not affect perennial grass density, biomass of intro-
duced crested wheatgrass increased on grazed plots
(Schmelzer et al 2014). Grazing in fall reduced the
cheatgrass seed bank to about 50% (3,432+2,513
seeds m~2) compared to ungrazed areas (7187 + 1569
seeds m™2), but sufficient seed numbers remained to
result in a rapid increase in seed densities if grazing
were stopped (Perryman et al. 2020).
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Dormant season targeted grazing in intact native eco-
systems also can reduce fine fuels and fire spread. Most
studies on effects of dormant season targeted grazing in
intact ecosystems on fuels are from sites in southeastern
Oregon characterized by Wyoming big sagebrush and
Thurber’s needle grass (Achnatherum thurberianum)
with relatively low resilience and resistance (Davies
et al. 2015a, b, 2017, 2022). These sites received about
250 to 280 mm of precipitation annually and had initial
covers of about 10% shrubs, 20% total herbaceous, and
20% litter.

Dormant season targeted grazing with moderate uti-
lization (40—60% of available forage removed) for a
single year reduced herbaceous fuel cover, continuity,
height, and biomass and increased fuel moisture (Davies
et al. 2015a). Prescribed burns applied the following
fall showed that grazed areas had lower burn tempera-
tures than ungrazed areas (Davies et al. 2015b). The rate
of fire spread was 3.2 times faster (about 0.24 m s ! vs.
0.08 m s7'), while flame length was nearly four times
greater (2.4 m vs 0.8 m) in ungrazed than grazed areas
(Davies et al. 2015b). Over a 5-year period after fire, per-
ennial bunchgrass biomass, but not density, was slightly
higher in grazed than ungrazed plots (Davies et al. 2021a,
b). In unburned plots, annual grass cover and biomass
varied among years but increased in both grazed and
ungrazed treatments averaging approximately 3% on
grazed and 6% on ungrazed plots at the end of the study
(Davies et al. 2022). Cover of large bunchgrasses was
higher on grazed plots initially and remained higher
during the study; there was no difference between treat-
ments in bunchgrass density or cover and density of
the perennial grass, Sandberg bluegrass (Poa secunda)
(Davies et al. 2022). Overall, dormant season grazing with
moderate utilization had minimal effects over time, but
because no pretreatment data were presented, it was not
possible to clearly separate site vs. treatment differences.

A comparison of effects of fall grazing, spring grazing,
and no grazing on fuels and fire behavior showed that
both grazing treatments decreased fine fuel biomass,
cover, and height, and increased fuel moisture, thereby
decreasing ignition probability and initial fire spread
compared to the ungrazed treatment (Fig. 12a, b) (Davies
et al. 2017). Modeled probability of initial fire spread was
sixfold greater in fall-grazed than spring-grazed treat-
ments when evaluated in August (Fig. 12b), likely because
grazing in fall had little influence on the subsequent
year’s plant growth. However, spring grazing likely also
had a greater effect on perennial native vegetation.

Effects of different levels of herbaceous biomass
removal (low [15-30%], moderate [40-55%], high [60—
75%]) during the growing season by cattle on fire igni-
tion and initial fire spread were evaluated at a similar
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Wyoming big sagebrush site with relatively low shrub
cover (Orr et al. 2022). Growing season grazing reduced
fine fuel loads and increased bare ground, which at mod-
erate- and high-grazing, reduced fire ignition and spread
relative to controls. Fuel moisture varied among years
but was generally higher with moderate- and particularly
high-intensity grazing. Total herbaceous, perennial, and
litter fuels also varied among years, but were generally
lowest in moderate followed by high-intensity grazing.
Total area burned as well as maximum and average fire
spread were generally lower in grazed treatments than in
controls but did not differ among grazing intensities.

A separate study in southern Idaho evaluated effects of
cattle grazing in summer and fall at zero, low (25-35%),
and moderate (50-60%) grazing utilization levels on
fire behavior in big sagebrush communities that varied
in shrub cover and understory species (Schachtschnei-
der 2016). Shrub canopy cover had highly significant
effects on flame length and rate of spread (p<0.01) and
was positively correlated with both flame length and
rate of spread when evaluated across grazing utilization
levels (Fig. 13) (Schachtschneider 2016). Grazing utili-
zation had an effect on flame length and rate of spread,
but relationships were difficult to discern. Shrub canopy
cover appeared to be the primary factor driving flame
length and rate of spread above shrub covers of about
20% (Schachtschneider 2016, also see Britton et al. 1981).
This relationship contradicts suggestions that areas
with higher shrub cover require higher-intensity live-
stock grazing to prevent fire spread (Orr et al. 2022). In
addition, higher grazing intensity, especially during the
growing season, may result in progressive increases in
sagebrush and other shrubs, decreases in perennial her-
baceous species, and a loss of resilience and resistance
over time (Fig. 4). Therefore, cattle grazing to reduce fine
fuels is likely limited to areas with relatively low shrub
cover due to the potential of fire to carry through the
shrub canopy.

Preemergent herbicides

Imazapic is a pre- to early emergence herbicide that
has been widely used to decrease emergence and estab-
lishment of invasive annual grasses and prevent devel-
opment of annual grass fire cycles. Effectiveness of
Imazapic in suppressing invasive annual grass fuels
depends on timing and rate of application and initial
suppression effectiveness can vary widely (Mangold
et al. 2013). Applying Imazapic shortly after emergence
at a rate of 105 to 141 g ha™! active ingredient provides
consistent, short-term (1-3 years) control of cheatgrass
(Elserod and Rudd 2011; Davison and Smith 2007; Man-
gold et al. 2013; Pyke et al. 2014; Morris et al. 2017).
Imazapic reduces multiple invasive annual grass species
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Fig. 12 Mean (+s.e) ignition and burn probability (a) and fire spread probability and herbaceous fuel moisture (b) expressed as a percentage
in July and August for fall-grazed, spring-grazed, and ungrazed treatments. Fall-grazed was grazed in the prior fall; spring-grazed was ungrazed
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from Wyoming big sagebrush and bunchgrass sites with an average of 219% shrub cover west of Burns, OR. Figure from Davies et al. (2017)

including cheatgrass (Pyke et al. 2022), medusahead
(Taeniatherum caput-medusae) (Bekedam 2004; Davies
et al. 2015¢, 2018; Donaldson and Germino 2022), and
ventenata (Ventenata dubia) (Davies and Hamerlynck
2019). However, without effective restoration seeding,
invasive grass abundance may return to initial or higher
levels within a few years (Davies et al. 2019; Pyke et al.
2022), and may stimulate secondary invasion by invasive
tall forbs (Donaldson and Germino 2022).

Imazapic appears to have less effect on persistence and
resprouting of residual perennial species than invasive
annuals at landscape scales (Applestein et al. 2018). How-
ever, various studies showed decreases in perennial spe-
cies, such as Sandberg bluegrass following application of
Imazapic (Pyke et al. 2022). Applying Imazapic prior to
restoration seeding can negatively impact establishment
of native shrubs (Owen et al. 2017) and perennial grasses
(Shinn and Thill 2004), but may have a lesser effect on
introduced species, such as crested wheatgrass (Agropy-
ron cristatum), Siberian wheatgrass (Agropyron fragile),

and forage kochia (Bassia prostrata) (Davies et al. 2015a,
b, ¢, 2018).

Indaziflam (Rejuvra®) is a recently approved (2020)
preemergent herbicide that inhibits seedling establish-
ment and provides 3 to 4 years of control of invasive
annual grass fuels. Indaziflam was approved for use on
sites grazed by domestic livestock at a rate no higher
than 73 g ha™' (Seedorf et al. 2022). Indaziflam effectively
controlled cheatgrass (e.g., Terry et al. 2021, Clark et al.
2020, Courcamp et al. 2022a, 2022b), ventenata (Hart and
Mealor 2021), feral rye (Secale cereale) (Clark et al. 2020),
and a nonnative annual forb (Alyssum spp.) (Meyer-
Morey et al. 2021). However, Indaziflam had consistently
negative effects on the seedbanks of native species, par-
ticularly native annual forbs (Meyer-Morey et al. 2021,
Courcamp et al. 2022b). In seeding trials, both Indaziflam
and Imazapic negatively affected seeded and residual spe-
cies across a range of site conditions in Utah, decreasing
bluebunch wheatgrass (Pseudoroegneria spicata) seed-
ling emergence by 96 and 46%, and 2-year plant density
by 91 and 65%, respectively, compared to non-herbicide
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cover and not herbaceous fuel is likely the primary factor driving flame length and rate of spread above shrub covers of about 20%. Figure

from Schachtschneider (2016)

treatments (Terry et al. 2021). Both herbicides reduced
aboveground biomass of bluebunch wheatgrass by over
85% 2 years after treatment.

Neutral or positive effects of Indaziflam on established
perennial grasses and forbs were observed in cooler and
moister sagebrush and prairie ecosystems with native,
remnant plant communities, and relatively high resilience
and resistance. In mountain big sagebrush and bluebunch
wheatgrass communities Indaziflam had little effect on
perennial native grasses (Courcamp et al. 2022a). In more
productive communities characterized by species such as
Prairie sagewort (Artemisia frigida), western wheatgrass
(Pascopyrum smithii), and green needlegrass (Nassella
viridula), Indaziflam resulted in increases in perennial
grasses (Clark et al. 2020; Hart and Mealor 2021). Litter
intercepts herbicides during application and prescribed
fire prior to application increased Indaziflam effective-
ness in cool and moist communities dominated by west-
ern wheatgrass and by the introduced perennial grasses,
Kentucky bluegrass (Poa pratensis) and Canada bluegrass
(Poa compressa) (Seedorf et al. 2022).

The SageSTEP study evaluated interacting effects of
Impazapic application with prescribed fire, mowing, and
tebuthiuron application in Wyoming big sagebrush eco-
systems. In the first 3 years after treatment, cheatgrass
cover was reduced at least 63%, invasive annual forb cover
by at least 45%, and unexpectedly, perennial grass cover

by 49% (Pyke et al. 2014). Consequently, herbaceous fuels
were decreased by 30% in years 2 and 3 posttreatments.
Imazapic had no impact on total, shrub, litter, or downed
woody fuel and there was no interaction among Imazapic
and sagebrush treatments for any fuel component. How-
ever, Imazapic treatments reduced modeled rates of
spread by an additional 0.5 m min~! compared to plots
receiving only shrub removal treatments (Ellsworth et al.
2022). Imazapic treatment effects on modeled fire behav-
ior did not differ across shrub treatments or among years
nor influence flame length or reaction intensity.

Tradeoffs of treatments that reduce annual herbaceous
fuels

Effects of treatments that reduce herbaceous fuels on
vegetation and fuel structure, fire behavior, and ecologi-
cal response have important fire management implica-
tions (Table 7). Targeted grazing to remove invasive
annual grass fuels in heavily invaded areas can be highly
effective, but two or more years are needed to remove the
seedbank and prevent subsequent increases if treatments
cease (Schmelzer et al. 2014). To be viable over the long
term, targeted grazing requires either repeated applica-
tion or successfully seeding and establishing perennial
species. In warmer and drier ecological types where tar-
geted grazing is typically used, establishing perennial
species is difficult and may require repeated entries (e.g.,
Knutson et al. 2014; Shriver et al. 2019).
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Dormant season grazing to reduce herbaceous fuels and
fire spread has promise but has been demonstrated for
only a few ecological site types in southeastern Oregon
with relatively low sagebrush cover. A primary tradeoff is
that removal of herbaceous fuels by grazing reduces flame
length and rate of spread only when shrub cover is rela-
tively low (<20%) (Fig. 13) (Schachtschneider 2016, Orr
et al. 2022). Defining the conditions under which dormant
season grazing is most likely to be successful in reducing
fuels and fire spread is a logical next research step.

Preemergent herbicides can be highly effective at reduc-
ing invasive annuals, but there may be significant trade-
offs. Because their suppressive effects are short-lived, i.e.,
1 to 3 years for Imazapic and 3 to 4 years for Indaziflam,
successful regrowth or establishment of perennial species
is required to inhibit the recovery of invasive annuals fol-
lowing treatment (Lazarus and Germino 2022). In addi-
tion, negative effects on seed banks, existing perennial
plants, and newly seeded species, especially with Indazi-
flam, may decrease the ability to meet posttreatment
objectives, particularly in warmer and drier sites.

Key research needs to effectively implement
treatments that modify fuels

Additional research is needed to determine the most
effective treatments for reducing fuels and fire hazard
across the diverse vegetation types and ecological condi-
tions in the sagebrush biome. A key aspect includes clari-
fying the tradeoffs of treatments that decrease woody
fuels (shrubs and trees) but increase herbaceous fuels
(native grasses and forbs) on future fuels and fire behav-
ior vs. ecological resilience and resistance to invasive
plants. Increases in herbaceous fuels posttreatment can
elevate rate of spread and other fire behavior metrics,
especially in pinyon-juniper expansion areas (Bunting
et al. 1987; Williams et al. 2023). However, greater abun-
dance of perennial herbaceous species may increase both
ecological resilience and resistance to invasive annual
grasses following subsequent wildfires (Chambers et al.
2014b, 2019). Thus, greater understanding is needed of
the site characteristics and ecological conditions under
which treatments that modify fuels are most effec-
tive in promoting the longer-term resilience and resist-
ance of sagebrush ecosystems. Because both woody and
herbaceous fuels typically increase over time after fuel
treatments, an increased understanding of woody fuel
treatment durability and appropriate retreatment inter-
vals or treatment combinations also is needed.

Reducing fine fuels has the potential to minimize fire
spread and aid fire suppression (Schmelzer et al. 2014).
High-intensity targeted grazing reduced fine fuels in
cheatgrass-dominated areas, but retreatment was required
to prevent a rapid increase of the invader (Perryman et al.
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2020). An understanding of how to restore perennial spe-
cies following high-intensity grazing would increase the
efficacy of this treatment. Dormant season targeted graz-
ing reduced herbaceous fuel and fire spread in intact
sagebrush ecosystems with relatively low shrub cover in
southeastern Oregon and had minimal effects on native
perennial herbaceous species (Davies et al. 2017, 2021a,
2022). However, a threshold of shrub cover (~20%) exists
above which fire spread is driven by the shrubs and tar-
geted grazing to remove herbaceous fuels has little effect
on fire behavior (Britton and Sneva 1981; Schachtschnei-
der 2016; Orr et al. 2022). This indicates that additional
research is needed on the fuel characteristics under which
dormant season targeted grazing to decrease herbaceous
fuels is effective in reducing fire behavior and improving
ecological resilience and resistance over a broader range of
ecological types and fuel characteristics. Preemergent her-
bicides reduced annual grasses but had differing effects on
perennial native and introduced species in warm and dry
vs. cool and moist environments indicating a need to clar-
ify the effects of preemergent herbicides across the diverse
ecological types and conditions in the sagebrush biome.

Most research on the effects of fuel treatments has
focused on single ecological types and study areas have
been relatively small scale (McKinney et al. 2022). These
studies provide a local understanding of individual sites
and can inform adaptive strategies for implementing treat-
ments to meet specific objectives (Dittel et al. 2023). How-
ever, we still lack the information needed to optimize the
types and locations of treatments to reduce fuels and miti-
gate fire risk across broader spatial scales. Studies designed
to evaluate the effects of fuel treatments across not only
environmental gradients but also gradients of shrub or
tree cover will help refine the conditions under which fuel
treatments are most effective in promoting longer-term
resilience and resistance. Developing landscape-scale spa-
tial data of the dominant sagebrush associations, phases
of pinyon-juniper expansion, and persistent woodlands
(Chambers et al. 2023b) coupled with indicators of resil-
ience and resistance (Maestas et al. 2016a, b; Chambers
et al. 2023a) will help provide the understanding of likely
treatment response needed to prioritize fuel treatment
investments at landscape scales. An increased understand-
ing of the effects of climate change on fuel treatment effec-
tiveness and on fuel treatment prioritization is essential for
mitigating fire risk as the atmosphere warms.

Conclusions

In most cases information exists to make informed deci-
sions on treatments to mitigate the effects of wildfire
and improve ecological resilience at local scales. Pri-
mary considerations are the short- and long-term effects
on fuels and fire behavior and thus fire severity and the
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ecological response. To increase ecological resilience and
resistance to nonnative annuals, treatments should be
selected that minimize fire severity and the loss of desir-
able perennial species in subsequent wildfires. Additional
research is needed to prioritize areas for management
and determine optimal strategies across large sagebrush
landscapes.
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