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Abstract 

Background Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by system‑
atically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape 
in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises sub‑
stantial concerns. The most direct way of understanding this trade‑off between wildfire risk reduction and prescribed 
fire escapes is to explore patterns in the historical prescribed fire records. This study investigates the spatiotemporal 
patterns of escaped prescribed fires in California from 1991 to 2020, offering insights for resource managers in devel‑
oping effective forest management and fuel treatment strategies.

Results The results reveal that the months close to the beginning and end of the wildfire season, namely May, June, 
September, and November, have the highest frequency of escaped fires. Under similar environmental conditions, 
areas with more records of prescribed fire implementation tend to experience fewer escapes. The findings revealed 
the vegetation types most susceptible to escaped prescribed fires. Areas with tree cover ranging from 20 to 60% 
exhibited the highest incidence of escapes compared to shrubs and grasslands. Among all the environmental condi‑
tions analyzed, wind speed stands out as the predominant factor that affects the risk of prescribed fire escaping.

Conclusions These findings mark an initial step in identifying high‑risk areas and periods for prescribed fire escapes. 
Understanding these patterns and the challenges of quantifying escape rates can inform more effective landscape 
management practices.
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Resumen 

Antecedentes Las quemas prescriptas juegan un rol crítico en la reducción de la intensidad y severidad de futuros incen‑
dios, haciéndolo mediante el consumo amplio y sistemático de la vegetación (biomasa) acumulada. Mientras que la proba‑
bilidad de escapes de quemas prescriptas en rodales y otros tipos de vegetación es muy baja, sus consecuentes impactos, 
particularmente cuando derivan en grandes incendios, causan una gran preocupación. La mejor manera de entender este 
intercambio entre la reducción del riesgo de incendio y el escape de quemas prescriptas es mediante la exploración de 
los patrones en los registros históricos de quemas prescriptas. Este estudio investigó los patrones espacio‑temporales de 
escapes de fuegos de quemas prescriptas en California desde 1991 y 2020, ofreciendo indicios a los manejadores de recur‑
sos para que puedan desarrollar un manejo efectivo de los bosques y estrategias de tratamientos para la vegetación.
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Resultados Los resultados revelan que los meses cercanos al comienzo o a la finalización de la estación de fuegos, 
en este caso mayo, junio, setiembre y noviembre, tienen la mayor frecuencia de escapes de fuegos. Bajo las mismas 
condiciones ambientales, áreas con mayores registros de implementación de quemas prescriptas, tienden a tener 
menos escapes de fuegos. Los resultados revelan los tipos de vegetación más susceptibles al escape de quemas. 
Áreas cuya cobertura forestal variaba entre 20% a 60% exhibieron la mayor incidencia de escapes de fuegos compara‑
das con arbustales o pastizales. Entre las condiciones ambientales analizadas, la velocidad del viento aparece como el 
factor predominante que afecta el riesgo de escape de una quema prescripta.

Conclusiones Estos hallazgos marcan un paso inicial en la identificación de áreas de alto riesgo y períodos de escape 
del fuego en quemas prescriptas. El entendimiento de estos patrones y los desafíos que implican la cuantificación de 
las tasas de escape pueden orientarnos sobre cómo implementar prácticas de manejo más efectivas.

Introduction
The number of annual wildfires, the total burned area, 
and property damage have reached unprecedented lev-
els in the past decades, reflecting a new wildfire regime 
(Dennison et  al.  2014; Li and Banerjee  2021; Shuman 
et  al.  2022). The change is caused by a combination of 
climate change, fuel accumulation, and forest densifica-
tion due to fire exclusion, forest management practices, 
and insufficient fuel treatments that adequately replace 
the role frequent fire once had (Miller et al. 2020). Veg-
etation management is one of the primary mitigation 
measures that aim to proactively prepare the landscape 
for the inevitability of wildfires (Jazebi et al. 2019). Veg-
etation management can include a wide variety of activi-
ties, such as constructing fuel breaks, prescribing fires, 
and mechanical thinning (Prichard et al. 2020; Baijnath-
Rodino et al. 2023; Banerjee et al. 2020; Banerjee 2020). 
Although mechanical thinning can be effective on its 
own if applied properly, prescribed (Rx) fire-alone or in 
conjunction with a mechanical treatment-is widely con-
sidered a relatively fast and highly effective treatment for 
reducing the severity of wildfires (Prichard et  al.  2021; 
Ryan et al. 2013).

From an ecological standpoint, periodic low-intensity 
prescribed burning in fire-adapted forested landscapes 
(such as western coniferous forests) can reduce and 
maintain low amounts of surface and ladder fuels in for-
ests (Keane 2008). They are frequently used in meadows, 
grasslands, and coniferous forests (Dyer  2002; Brad-
stock et  al.  2006; Ryan et  al.  2013; Engber et  al.  2011), 
when conditions of weather and fuel moisture create safe 
burn conditions (Dether and Black 2006). These periods 
are called burn windows. Because they can occur infre-
quently and for a short duration during the course of a 
year, predicting their occurrence and being ready to con-
duct burns is pivotal in advancing the use of prescribed 
fire (Baijnath-Rodino et al. 2022; Striplin et al. 2020; Chi-
odi et al. 2019). Besides its effectiveness in reducing wild-
fire severity, prescribed burning also has the advantages 
of low economic cost and promoting fire-adapted flora 

(Finney et  al.  2007; Faivre et  al.  2016; Ryan et  al.  2013). 
However, given the extensive backlog of untreated for-
ests, it will take decades of fuel treatments carried out at 
faster rates and on larger spatial scales to have impacts 
at the ecosystem level (North et al. 2012; Kolden 2019). 
In 2020, the US Forest Service and the State of California 
announced a joint state-federal initiative to increase the 
annual scale of fuel vegetation treatment to one million 
acres (404,686 hectares) by 2025. This initiative involves 
expanding the use of prescribed fires as a key strategy 
and will be implemented by California state agencies 
such as CAL FIRE and other state entities, in partnership 
with the US Forest Service (Hazelhurst 2020).

Despite the necessity of prescribed fires to reduce 
the risk of wildfires in the western United States 
(Kolden 2019), their use has been limited in both speed 
and scale, due to several policy and operational barri-
ers (Schultz et  al.  2019; Ryan et  al.  2013). A perceived 
obvious risk is the potential for escape, where ignitions 
occur outside the designated burn area during pre-
scribed fires, becoming too large or difficult for on-site 
equipment and personnel to manage, thus necessitat-
ing external resources for suppression. Prescribed fire 
escapes are generally considered rare events; according 
to the 2022 National Prescribed Fire Program Review 
by the Forest Service Chief, the estimated escape rate is 
approximately 0.16% among the 4500 prescribed fires 
conducted annually across the United States by the For-
est Service (USFS  2022a). However, even a small num-
ber of escapes possess the potential to escalate into large 
wildfires, posing significant threats to nearby communi-
ties and properties (Kobziar et al. 2015; Quinn-Davidson 
and Varner 2011). Escapes can lead to the suspension of 
prescribed fire programs across the country, increasing 
the backlog of needed treatments and increasing the dif-
ficulty of approving future burn plans (York et al. 2020). 
The Calf Canyon prescribed fire, for example, was con-
ducted in January 2022 and subsequently reignited and 
escaped in April 2022. The Las Dispensas prescribed fire 
conducted on April 6, 2022, escaped and became the 
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Hermits Peak wildfire and joined the Calf Canyon wild-
fire on April 22, resulting in one of the largest wildfires 
in New Mexico’s recorded history. The suppression of the 
340,000-acre (137,600 hectares) Hermits Peak Fire cost 
approximately 100 million USD (USFS  2020). Almost 
simultaneously, another prescribed fire about 300 km 
south of the Hermits Peak Fire crossed the control line 
and escaped as the Overflow Fire. Despite being rapidly 
brought under control, approximately 1900 acres (769 
hectares) were burned in total (NewMexicoFireInforma-
tion 2022). The US Forest Service then issued a “90-day 
prescribed fire review” on 22 May 2022, suspending all 
prescribed fire activities (USFS  2022b) pending further 
scrutiny. Escaped prescribed fires that result in moratori-
ums in their broad-scale application have the potential to 
defeat their intention-to reduce wildfire severity and eco-
system restoration, among others. Thus, understanding 
the historical trends in escaped prescribed fires is crucial 
for quantifying risks of escape events as well as strategi-
cally implementing future prescribed burns (Waldrop 
and Goodrick 2012).

Accurate quantification of the frequency and rates 
of prescribed fire escapes is restricted by limitations in 
monitoring data quality, particularly concerning pre-
scribed fires that occur on private land, such as crop fires. 
Although the major large-scale escape events from pre-
scribed fires on private land would be documented as 
wildfires in databases such as the Fire Perimeter database 
released by the California Department of Forestry and 
Fire Protection (CAL FIRE) (FRAP 2018), there is an evi-
dent gap in systematic recording for prescribed fires that 
do not escape on private land. This deficiency can lead 
to an overestimation of escape rates. In addition, while 
detailed reports on individual escape events provide val-
uable insight into local prescribed burn practices, their 
broader applicability is limited. There is an urgent need 
for a continuous and systematic analysis of temporal 
and spatial patterns as well as subsequent trends in pre-
scribed fire escapes. However, existing statistics heavily 
rely on questionnaires and interviews (Miller et al. 2020; 
Weir et al. 2019), proving insufficient to establish a com-
prehensive quantitative understanding of the true extent 
of prescribed fire escapes.

To overcome the limitations of existing data we propose 
to conduct a meta-analysis encompassing diverse data-
sets and methodologies. By synthesizing data from mul-
tiple sources, including official fire datasets, government 
reports, and social sensing data, we aim to aggregate 
and analyze a comprehensive dataset that spans tempo-
ral and spatial scales. Leveraging a meta-analytic frame-
work will allow for a better understanding of prescribed 
fire escape risks, providing valuable insights for resource 
managers and policymakers to enhance fire management 

strategies and mitigate potential impacts. The exploration 
of the indicators for potential escape events from pre-
scribed fires will have significant importance to resource 
managers across different jurisdictions. To highlight the 
need for improved data and to provide new methods to 
quantify prescribed fire escape risk, we ask the following 
questions about prescribed fires using currently available 
data: (1) Are there seasonal or monthly trends of escaped 
prescribed fires in California? (2) What are the spatial 
characteristics of escaped prescribed fires? (3) Given that 
the ignition and spread of wildfires are collectively influ-
enced by three influential dimensions-weather, topogra-
phy, and fuel-which environmental factors are associated 
with prescribed fire escapes? This study has the potential 
to serve as a model for similar assessments, emphasizing 
the critical role of enhanced data quality and novel meth-
odologies in understanding and mitigating prescribed 
fire escape risks.

Material and methods
Data
Escaped prescribed fires
The collection of prescribed fire data involved informa-
tion from two databases: the California Department 
of Forestry and Fire Protection (CAL FIRE), including 
records dating back to the early 1900s, and the Moni-
toring Trends in Burn Severity (MTBS) dataset, includ-
ing records from 1984 onward. Considering recent 
advancements in data recording integrity and systematic 
approaches, we selected the data spanning the preceding 
three decades, specifically from 1991 to 2020. All of these 
data sets provide comprehensive details, including the 
location of the fire, the ignition date, and the final burned 
areas. However, these databases mainly recorded fires 
that were planned and conducted by government or fire 
management agencies, with incomplete records of small 
prescribed fires conducted on private lands. After elimi-
nating duplicate records, the total number of prescribed 
fire records in California from 1991 to 2020 was 4679.

Escaped prescribed fire records that do exist in Cali-
fornia are mainly available from CAL FIRE. CAL FIRE 
has two programs that keep track of prescribed fire 
escapes: Fire and Resource Assessment Program (FRAP) 
(FRAP  2018) and California Incident Data and Statis-
tics Program (CALSTATS). The Fire Perimeter project 
of FRAP collects fire perimeter data from the Bureau 
of Land Management (BLM), CAL FIRE, National Park 
Service (NPS), and USFS and builds an ESRI ArcGIS 
file geodatabase. The fire history dates back to 1954 and 
includes 19 distinct wildfire causes, each classified by a 
specific code ranging from 1 to 19. Among these, cause 
code 18 denotes “escaped prescribed fires.” CALSTATS 
collects fire records throughout the state of California 
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using the National Fire Incident Reporting System 
(NFIRS) (CALSTATS  2021). Records can be obtained 
in the format of spreadsheets by submitting a request, 
which includes information on the types, causes, and 
locations of fires. We requested the fire records with 
NFIRS Incident Type codes 140–143, which means wild-
land fires, and 561, which means unauthorized burning. 
Then, the escaped prescribed fires were filtered by NFIRS 
Code 75, that is, agricultural or land management burns, 
including prescribed burns. As the primary focus of this 
study is to explore patterns related to escaped prescribed 
fires, records of prescribed fires carried out on agricul-
tural lands were retained, considering the potential risk 
of their escape leading to large fires in wildland areas. 
During the time period of 1991 to 2020, there were 74 
escaped prescribed fire records in the FRAP database 
and 239 records in the CALSTATS database, including 3 
recorded escapes that are duplicates. Analyses conducted 
on the dataset excluding agricultural fires can be found 
in the Supplementary Information (SI) (8. Results - Spati-
otemporal Patterns excluding agricultural fires).

Furthermore, with the increasing presence of social 
media, social sensing data have also become an impor-
tant source of recording and complementing data out-
side the official databases. Wildfire Today is a website 
that collects and releases wildfire news in real time 
(Wildfire  Today  2024). The data from Wildfire Today 
supplement and validate the official fire datasets. Their 
information is compiled from government reports, 
social media sources, guest writer submissions, and fire 
monitoring dashboards. For example, the escaped fire 
recorded in Victorville, California, on March 31, 2015, 
was not found in either of CALFIRE’s databases. In 
addition, their records of independent fire events have 
become increasingly comprehensive and complete in 
recent years. We collected the escaped prescribed fire 
news and reports from the Wildfire Today archives as an 
external data source. There are 13 records that point to 
actual escaped prescribed fires from 2008, the year the 
website was developed, to 2020.

To organize the data from different databases, we 
extracted the fire start date, fire name, and location 
information from all three databases, identified the 
data source, and sorted them together according to the 
fire start date. After removing duplicates, there are 310 
escaped prescribed fire records with accurate locations, 
represented by coordinates of the centroid point of fire 
perimeters, in California from 1991 to 2020, about 10 
escaped per year.

Environmental variables
The climate and topography data were extracted mainly 
from the spatial climate dataset Parameter-Elevation 

Regressions on Independent Slopes Model (PRISM) 
(PRISM  2020). These environmental variables were 
selected based on parameters relevant to determining the 
burn window for prescribed fires, specifically wind speed, 
maximum vapor pressure deficit (VPD), maximum tem-
perature, and precipitation, which contribute to escape 
events (Baijnath-Rodino et  al.  2022). Multi-year (2007–
2013) Annual Average Wind Speed in meters per second, 
at 10 m above surface level, was extracted from the Wind 
Integration National Dataset (WIND) Toolkit, developed 
by National Renewable Energy Laboratory. The resolu-
tion above California is 2 km × 2 km (Draxl et al. 2015). 
The maps for environmental variables can refer to SI (1. 
Data - Environmental Variables).

The Landscape Fire and Resource Management Plan-
ning Tools program uses “plot-level ground-based visual 
assessments and Lidar observations,” providing infor-
mation about the percentage of canopy cover of herba-
ceous plants, shrubs, and trees (LANDFIRE  2016). To 
investigate which types of vegetation are related to the 
highest escape risk, the Fuel Vegetation Cover (FVC) (SI 
Fig. S1(g)) of the program with a resolution of 30 m was 
overlayed on the escape record to calculate the spatial 
correlation. Additionally, the National Vegetation Clas-
sification (NVC) (SI Fig. S1(h) with the same resolution 
was used to further determine the dominant plant spe-
cies in the prescribed fires that escape.

Methods
Temporal analysis
To analyze the temporal variation of the escaped pre-
scribed fires, the total annual, seasonal, and monthly 
counts and the burned area were plotted against time. 
This study adopts the meteorological seasons used in 
California, with December, January, and February (DJF) 
representing winter; March, April, and May (MAM) rep-
resenting spring; June, July, and August (JJA) represent-
ing summer; and September, October, and November 
(SON) representing fall. Escaped prescribed fires with 
burned areas exceeding 5000 acres (2023 hectares) were 
considered extreme events, as they could significantly 
skew the results of burned area analyses by creating nota-
ble peaks in the months and seasons when they occurred. 
Therefore, these extreme events were treated as outliers, 
plotted as individual points in the figures, and excluded 
from the temporal analysis of total burned area. Statistics 
that include these extreme events are available in SI (2. 
Methods - Outliers Detection and Treatment).

The direct calculation of the probability of prescribed 
fire escape over the last 30 years, using escaped records 
divided by total prescribed fires, is problematic due to 
differences in data sources. Specifically, not all prescribed 
fires have records indicating whether they escaped, and 
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some escaped events may not have been recorded in the 
database. This discrepancy has a more significant impact 
on the burned area than on fire counts, especially when 
considering extremely large escaped fires (outliers). To 
address this issue and take total prescribed fire counts 
into account when analyzing the temporal patterns of 
escaped prescribed fires, Bayesian hierarchical models 
were used to investigate the occurrence probability and 
mean occurrence counts on a monthly basis. Specifi-
cally, the binomial distribution is apt for characterizing 
the count of successes in a sample drawn from a popula-
tion, and the Poisson distribution is applied in describing 
the probability of a particular number of events taking 
place within a fixed interval of time or space. Therefore, 
we opted for the Binomial-Beta model (Wilcox 1981) and 
the Poisson-Gamma model (Foster and Bravington 2013) 
to independently estimate the occurrence probability 
and occurrence counts of escaped prescribed fires each 
month. The detailed description and equations can be 
found in SI (3. Methods - Bayesian Models).

Spatial analysis
The analysis of spatial patterns was initiated with a com-
prehensive spatial randomness test (CSR) designed to 
delineate the first-order property of point processes 
Wiegand and A. Moloney (2004). This test measures the 
spatial randomness of escaped prescribed fires, and the 
χ
2 (chi-squared) statistic serves as a metric of the varia-

tion between observed and expected point distributions 
in the absence of any relationship between them in this 
test. The second-order property of point processes, based 
on pairs of points, is used to characterize how the spa-
tial point pattern deviates from complete spatial random-
ness (cluster or repulsion). The G-function, K-function, 
and L-function (Ripley 1976, 1977; Diggle 2003) are three 
common tools to measure how the spatial point pattern 
deviates from a homogeneous Poisson distribution, and 
their equations are detailed in SI (4. Methods - Com-
plete Spatial Randomness Test; 5. Methods - Identifica-
tion of Clustering or Repulsion Patterns). In general, if 
the estimated functions based on escaped prescribed fire 
records (observations) consistently exceed the theoretical 
distribution, it indicates that the observed point patterns 
contain more points than expected under the theoretical 
homogeneous Poisson distribution. This suggests that the 
spatial distribution of escaped prescribed fires is clus-
tered. The confidence intervals of the theoretical Poisson 
distributions for the G, K, and L functions were calcu-
lated by Monte Carlo simulation (Genton et  al.  2006; 
Turner 2009) with 99 iterations, to avoid randomness in 
the single theoretical distribution estimation. As long as 

the observed distribution falls within the envelope of the 
confidence interval, it is completely spatially random.

As a reference for interpreting the spatial patterns of 
escape events, the spatial intensity function of the occur-
rence of escape events, which describes the distribution 
of escape events density, was estimated by non-paramet-
ric kernel estimates (Kuter et  al.  2011; Liu et  al.  2010). 
The choice of KDE is made because this method only 
looks at the point patterns themselves, without covari-
ables; besides, it is non-parametric which means it does 
not need to include the model of the underlying process. 
Here, the mean squared error (MSE) between the ker-
nel estimator and the actual counts was used to select 
the bandwidth, for which the optimal bandwidth should 
minimize the MSE, and the optimal value is 0.17.

To establish the relationship between environmental 
variables and escaped prescribed fire incidents, logis-
tic regression analysis was employed. As a form of gen-
eralized linear regression, logistic regression facilitates 
the dichotomization of dependent variables based on 
multiple independent attributes (Hosmer  Jr. et  al.  2013; 
De  Vasconcelos et  al.  2001). Environmental conditions 
corresponding to each escaped prescribed fire point were 
extracted and incorporated into the logistic regression 
model. Subsequently, through the model training pro-
cess, the weights of individual variables were determined, 
indicating the influence of various meteorological and 
topographic factors on the occurrence of escape.

Spatial point clusters were analyzed in ArcGIS Pro 
using three methods: density-based clustering, hot spot 
analysis, and multivariate clustering. Density-based 
clustering aims to identify densely concentrated points 
distinguished from lower-density or vacant regions. 
Applying the Ordering Points to Identify Clustering 
Structure (OPTICS) technique (Agrawal et  al.  2016), 
this method detects clusters considering the spatial 
distribution of points and their distances to a specific 
number of neighbors. The minimum feature in each 
cluster was set to 4.

The Hot Spot Analysis tool calculates the Getis-Ord 
Gi* statistic for each feature in a data set to determine 
whether local patterns exhibit significant deviations from 
global features (Getis and Ord 1992; Ord and Getis 1995). 
Results from this analysis provided z-scores and p-values, 
which served as indicators of spatial clustering of either 
high or low values. Higher z-scores that are statistically 
significant denote intensified clustering of high values 
(hot spots), whereas lower statistically significant nega-
tive z-scores suggest notable clustering of low values 
(cold spots).

The multivariate clustering method applied the 
K-means algorithm in an attempt to identify clus-
ters characterized by high intra-cluster similarity and 
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significant inter-cluster differences (Jian  2009; Hinde 
et  al.  2007). The selection of cluster numbers was 
attempted with 3, 4, and 5 clusters, ultimately deter-
mining 4 clusters as optimal due to its effective sepa-
ration of clusters with distinct characteristics, all while 
maintaining minimal complexity.

The details and equations of above analyses were pro-
vided in SI (6. Methods - Kernel Density Estimation).

Results
Temporal patterns
Due to limitations in the existing prescribed fire data-
sets, accurately determining the proportion of escapes 

Fig. 1 Temporal patterns of Rx fires and escaped Rx fires in California from 1991 to 2020. Temporal patterns are depicted on the basis of yearly 
(a, b), seasonal (c–e), and monthly (f–h) occurrences. The seasons are denoted by the months they contain, with DJF representing winter, MAM 
representing spring, JJA representing summer, and SON representing autumn. Panels (a, c, and f) present data for Rx fires, while panels (b, d, 
and g) represent escaped Rx fires. Panels (e and h) represent the average burned area for a single Rx fire and a single escaped Rx fire in each 
season (e) and each month (h). The orange points and lines correspond to fire counts, the blue columns indicate the total burned area of the fires, 
and the grey triangles represent the outliers in escaped prescribed fires with burned areas larger than 5000 acres (2023 hectares)



Page 7 of 18Li et al. Fire Ecology            (2025) 21:3  

in prescribed fires is a challenge. Consequently, Fig.  1 
shows the side-by-side comparison of the 30-year tem-
poral patterns of annual, seasonal, and monthly counts of 
prescribed fires and escaped prescribed fires, along with 
their associated burned areas from 1991 to 2020.

The annual trends of both prescribed fires and escaped 
prescribed fires were significantly influenced by the con-
sistency of the record sizes. In 1991, only 36 prescribed 
fires were recorded, covering a total burned area of 
22,810 acres (9230 hectares). This number rose consider-
ably in 2005, with 369 prescribed fires recorded, resulting 
in a total burned area of 64,240 acres (26,000 hectares). 
In 2019, the number of prescribed fires surpassed 
700, covering more than 100,000 acres of burned area 
(Fig. 1a). Over the past three decades, 52.58% of escaped 
prescribed fires (163 out of 310) occurred in cropland. 
The risk of escape for prescribed fires related to agricul-
tural use is greater than that for forest management, as 
only 11.35% of prescribed fires (531 out of 4,679) were 
conducted in cropland.

The triangular markers in Fig.1b denote three escaped 
prescribed fires characterized by exceptionally large 
burned areas ( ≥ 5000 acres, or 2 hectares): the Weinstein 
Fire in 2000 (8284 acres or 3352 hectares), the Sierra 
Fire in 2006 (10,592 acres or 4286 hectares), and the 
Big Meadow Fire in 2009 (7553 acres or 3056 hectares). 
The transition of prescribed fires into extreme wildfires 
is influenced by a combination of environmental fac-
tors, fire management practices, and occasional human 
actions. While these extremely large escaped prescribed 
fires are influenced by the same environmental factors 
as smaller escaped fires, their significant burned areas 
would heavily skew the results of the temporal analysis. 
We chose not to exclude them entirely, as these large 
events are often the ones that bring public attention to 
prescribed fire escapes. Instead, we treated them sepa-
rately, excluding them from the general statistical analysis 
while representing them as individual markers to high-
light their significance (Fig. 1d, g).

Prescribed fires exhibit a prominent peak during 
autumn (SON) in both counts and total burned area 
(Fig. 1c). Looking at individual months, October emerges 
as the month with most implementation of prescribed 
fires (Fig. 1f ). Moreover, May, June, and November also 
experience intensive prescribed fire implementations ( ≥ 
500 fires), with prescribed fire counts of 522, 519, and 
587, respectively. The average burned area of a single 
prescribed fire is the largest during the summer (JJA) 
(Fig.  1e). Apart from the summer period, January, Feb-
ruary, and October notably have larger average burned 
areas ( ≥ 200 acres or 81 hectares) compared to other 
months (Fig.  1h). Although the implementation of 

prescribed fires may be less frequent during January and 
February, the scale of each implementation is substantial.

During the past 30 years, escaped prescribed fires have 
predominantly occurred during spring (MAM), with 
May experiencing the largest total burned area if outli-
ers are disregarded (Fig.  1d, g). From January to May, 
the count of escape records steadily increases, while the 
total burned area remains relatively stable, except for a 
notable increase in May. As June arrives, both the total 
counts and burned areas of escaped fires start to decline 
due to the beginning of the wildfire season and the adop-
tion of more cautious prescribed fire implementation. 
However, from July onward, the total counts of escapes 
show a second sustained upward trend, with relatively 
higher burned areas observed in September and Novem-
ber. Notably, the average single escaped fire burned area 
is significantly high in May and September, followed by 
June and November, corresponding to months close to 
the beginning and end of the wildfire seasons.

Temporal statistics that consider only fires in natural 
vegetation, excluding agricultural burns are provided in 
SI (Fig. S5). The exclusion of agricultural fires from this 
analysis does not significantly affect the annual, seasonal, 
or monthly temporal patterns observed for both pre-
scribed fires and escaped prescribed fires. The sole nota-
ble change is a significant increase in the average burned 
area of escaped prescribed fires occurring in May, June, 
and September.

The occurrence probability of escaped fires in each 
month over the last three decades by decade was ana-
lyzed using the Binomial-Beta Bayesian model (Fig. 2d–
f). The points represent the estimated mean escape 
probability in each month. The thicker line represents the 
50% posterior credible interval and the thinner outer seg-
ments represent 90% posterior credible interval, indicat-
ing that, given the observed historical data, there is a 50% 
and 90% probability that the true estimate lies within the 
interval, respectively. The credible intervals of monthly 
escape probability from 1991 to 2000 are wide, indicat-
ing high uncertainty, owing to limited data and inconsist-
ent entry frequency and quality. Since 2001, the credible 
intervals have become narrower, indicating an improve-
ment in the data integrity of escaped prescribed fire 
records.

During the period of 2001–2010, the highest escape 
probability occurs in July and August, with consider-
able uncertainty, as these months fall within the wild-
fire season. This pattern remains consistent from 2011 
to 2020. From 2001–2010 to 2011–2020, the probabil-
ity of escape occurrence increased in all months while 
maintaining similar monthly trends. The most signifi-
cant increases are observed in late winter and spring, 
particularly in February, which even becomes a minor 
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peak of escape probability. After that, the probability of 
escape gradually decreases until June. The mean escape 
probability in autumn and winter remains lower than 
0.1. While the month with the highest escape probabil-
ity may not coincide with the month having the most 
escape records or the largest escaped fire burned areas, 
the conclusion that the risk of escape is higher just 
before the wildfire season compared to right after the 
wildfire season remains valid. Given that fall burns are 
executed most frequently (Baijnath-Rodino et al. 2022), 
selecting suitable burn windows within this period 
becomes essential to mitigate the risk of escapes.

Meanwhile, the mean count of possible escapes in each 
month for the past 30 years by decades was analyzed by 
the Poisson-Gamma model (Fig.  2d–f). From the first 
decade to the last, it is evident that mean counts increase 
in all months. The monthly distribution of the mean fire 
count in the last decade (Fig. 2f ) closely aligns with the 
30-year total counts of escaped prescribed fires by month 
(Fig.  1g), confirming the rapid increase in escaped fire 
records between 2011 and 2020. During this period, a 

new peak emerged in the spring, in addition to the exist-
ing autumn peak, which is consistent with the 30-year 
seasonal distribution shown in Fig.  1d. This indicates a 
significant increase in spring escapes from 2011 to 2020, 
making it a major peak by the end of the 30-year period.

Spatial patterns
The results of the Complete Spatial Randomness Test 
(CSR) for escaped prescribed fires revealed a p-value of 
10

−4 , indicating that their spatial intensity (i.e., the den-
sity) is significantly non-constant at a significance level 
of 0.05. This suggests that the escapes are not randomly 
distributed. The estimation of G, k, L functions (refer to 
SI Fig. S4) suggests that the spatial distribution of the 
escaped prescribed fires is clustered.

The spatial distribution of escaped prescribed fires 
can be viewed as a point process (Fig. 3). Evidently, the 
escapes were concentrated in northern California and 
central California, particularly along the Sierra Nevada 
mountains and in the Central Valley. Additionally, there 
were notable hot spots of escapes in the southwestern 

Fig. 2 Distribution of escaped Rx fire occurrence probability and mean counts in each month across California from 1991 to 2020. The probability 
distribution was estimated using the Binomial‑Beta model, while the mean occurrence count distribution was estimated using the Poisson‑Gamma 
model. The points represent the mean value, the thick inner segments represent 50% posterior credible interval and the thinner outer segments 
represent 90% posterior credible interval
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corner of California, spreading across the San Bernardino 
National Forest and the Angeles National Forest on the 
San Gabriel Mountains.

To determine the high-density regions for escaped 
prescribed fires, we classified their clusters based on 
the distances among individual escape events and their 
associated density (Fig.  4). The cluster map was over-
laid with California’s climate divisions and ecoregions 
to identify the climate and ecosystem characteristics 
associated with each cluster (Fig.  4a, b). Considering 
the climate divisions, the two largest clusters were situ-
ated in the middle of the Sacramento Drainage (climate 
division 402) and San Joaquin Drainage (climate division 
405) basin area. Additionally, three climate divisions 
along the coast, namely the North Coast Drainage (cli-
mate division 401), the Central Coast Drainage (climate 
division 404), and the South Coast Drainage (climate 
division 406), included the majority of the remaining 
escaped prescribed fires, exhibiting a moderate cluster 
density. Notably, the Southeast Desert Basin contains 
the only isolated cluster, located in the Palo Verde Val-
ley and near the Colorado River Indian Reservation. In 

the analysis of ecoregions (Fig. 4b), it was found that the 
majority of the escaped prescribed fires classified into 
six clusters were concentrated in the Central California 
Foothills and Coastal Mountains (region 6) as well as the 
Central California Valley (region 7). Furthermore, the 
Sierra Nevada Mountains (region 5) contained points 
on the eastern periphery of the two largest clusters. The 
integrated density distribution of escaped prescribed 
fires at the state level (Fig.  4c) shows consistent spatial 
patterns with Fig. 4 a, b.

Due to the lack of an exact match between the pre-
scribed fire database and the escaped prescribed fire 
database, calculating the rate of escape in a specific 
region may introduce some bias. To account for the over-
all prescribed fire implementation, a comparison was 
made between the hot and cold spots for prescribed fires 
and escaped prescribed fires across California (Fig.  4d, 
e). Hot and cold spots on the maps indicate whether the 
local point pattern is statistically different from the global 
features, i.e., it displays more intensity or sparsity. The 
initiation of prescribed fires in natural vegetation or agri-
cultural lands were represented using different colors of 

Fig. 3 Spatial distribution of escaped prescribed fires in California from 1991 to 2020. Red points represent the locations of escaped prescribed fires, 
while county boundaries are shown in grey
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points. Both maps reveal extensive areas of high-confi-
dence hot spots, while the cold spots only appeared at a 
90% confidence level, predominantly concentrated in the 
desert basin. The hot spots for prescribed fire records are 
concentrated in several regions, including the Northern 
Coast Drainage in northern California, the eastern area 
of the Sierra Nevada Mountains in central California, and 
a small cluster in the South Coast Drainage in Southern 
California. On the other hand, the hot spots for escaped 
prescribed fires exhibit patterns similar to the spatial 
density distribution, with concentrations observed in the 
Sacramento Drainage (climate division 402) and the San 
Joaquin Drainage (climate division 405), respectively.

The overlap of hot spots in the two maps is only evi-
dent in central California, particularly on the western 
side of the Sierra Nevada Mountains (Fig. 4d, e). Within 
the Sacramento Drainage, the overlaps largely coincide 

with the areas of highest density for escaped prescribed 
fires. However, in the San Joaquin Drainage, the overlaps 
occur on the eastern side of the high-density center for 
escaped prescribed fires, avoiding the main high-density 
area and containing only a moderate density of escaped 
prescribed fires. Consequently, the middle of the Sac-
ramento Drainage emerges as one of the most common 
areas for prescribed burns as well as one of the areas with 
the highest occurrence of escape events. In contrast, the 
middle of the San Joaquin Drainage, where prescribed 
fires are more frequent, displays a moderate density 
of escapes. The highest density of escapes in the San 
Joaquin Drainage is situated to the west of the prescribed 
fire hot spot and is not contained within the prescribed 
fire hot spots at all. This pattern of prescribed fire and 
escaped prescribed fire hot spots adjacent to each other 

Fig. 4 Spatial distribution of escaped Rx fire across California. The points in (a and b) represent escaped prescribed fire locations, with different 
colors representing distinct clusters. A total of 10 clusters were identified, and clusters with the same color, but not adjacent and located far apart, 
are considered separate clusters. Varying levels of grey in panels (a) for climate divisions and (b) for ecoregions denote the magnitude of total 
escaped prescribed fire counts. Panel (c) depicts the estimation of kernel density for escaped Rx fires; panel (d and e) depict the identification of hot 
and cold spots for Escaped Rx fires and Rx fires, respectively. The points indicate the locations of fires, with different colors representing the types 
of prescribed fires initiated
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but not intersecting is consistent throughout the rest of 
California.

The spatial patterns of fires occurring mainly in natu-
ral vegetation, excluding agricultural burns are presented 
in SI (Fig. S6). Following the exclusion of prescribed and 
escaped agricultural fires, the distribution of hot spots for 
prescribed or escaped natural vegetation fires essentially 
remained unchanged. The primary hot spots continue 
to be located along the Central Valley, while additional 
relative hot spots emerged in northern California, areas 
noted for the high density of national forests.

Environmental condition profile in escaped prescribed fire 
sites
Prescribed fires are often carried out in areas with high 
risks of wildfires. Despite the strict and careful selec-
tion of the date and area for the implementation of pre-
scribed fires from the planning to execution phases, 
complete prevention of escapes remains a challenge 
(Ryan et  al.  2013). Among the various factors contrib-
uting to escapes, environmental conditions within the 
burned area by prescribed fires pose the greatest diffi-
culty in accurate prediction during planning or manipu-
lation during implementation (Agastra  2022). Results 
from logistic regression, which examined all prescribed 
fires and escaped incidents throughout California as pre-
sented in Table 1, highlight wind speed as the predomi-
nant factor influencing the risk of prescribed fire escape. 
Specifically, higher wind speeds at 10 meters are associ-
ated with an increased risk of escape fires. Additionally, 

fuel vegetation cover is identified as a significant variable 
affecting escape risk. In contrast, other variables show 
limited influence on escape occurrences. The significant 
impact of wind, contrasted with the minor influence of 
other variables on escape occurrences, may be attributed 
to the high variability in wind speed and direction (Simp-
son et al. 2013; Sharples et al. 2012) and large uncertainty 
(Sanjuan et  al.  2014) in wind prediction during pre-
scribed fire practices. Additionally, California’s extensive 
spatial scale and diverse environmental conditions tend 
to diminish the effects of other environmental factors 
when analyzing escapes at the state level.

Given the vast geographical expanse and complex cli-
matic conditions of California, the causes of prescribed 
fire escapes exhibit considerable variation across spatial 
distributions. Therefore, the escaped prescribed fires 
were classified into four clusters based on the selected 
environmental variables (Fig.  5). This classification 
ensures that fires within the same cluster share the great-
est similarities, while those in different clusters display 
the most significant variations. Upon overlaying climate 
division and ecoregion boundaries, it becomes obvious 
that the majority of cluster boundaries align with Califor-
nia’s ecoregions.

Cluster 1 mainly encompasses escaped prescribed fires 
within the Central California Valley (region 7), while also 
including scattered events within the Central California 
Foothills and Coastal Mountains (region 6). The Cen-
tral California Valley is crucial for California’s agricul-
tural production, featuring flat terrain, fertile soils, and 
a favorable climate, with nearly 70 percent of its land 
in cultivation (Kuminoff et  al.  2000). Notably, escaped 
events in cluster 1 exhibit relatively low precipitation and 
wind speed, coupled with high maximum temperatures 
and vapor pressure deficits compared to average climatic 
conditions. The cluster demonstrates characteristics of 
lower elevation, aspect, and slope, suggesting the pres-
ence of flatter, lower terrains. The hot and dry summers 
in this region are deemed risky for the implementation of 
prescribed fires, and any instances of escape could have 
significant negative impacts on local agriculture.

Escaped prescribed fires within cluster 2 are primar-
ily distributed along the ecoregion of Central California 
Foothills and Coastal Mountains, and Sierra Nevada, 
almost encircling cluster 1. This region is characterized 

Table 1 Logistic regression results for explanatory 
environmental variables associated with escaped prescribed fires 
in California from 1991 to 2020

Variables Coefficient S.E. p-value

Precipitation (in.) − 0.0003 0.0002 < 0.05

Max temperature (°C) − 0.0534 0.0730 0.46

Max vapor pressure deficit (hPa) 0.0390 0.0351 0.27

Fuel vegetation cover (%) − 0.0227 0.0032 < 0.05

Wind speed (m/s) 0.1572 0.0685 < 0.05

Elevation (km) − 0.0020 0.0002 < 0.05

Aspect (°) − 0.0012 0.0006 0.06

Slope (°) − 0.0189 0.0092 < 0.05

Fig. 5 Multivariate clustering of escaped prescribed fires and total counts in environmental divisions. The points in panels (a and b) represent 
escaped prescribed fire locations, with different colors representing distinct clusters. A total of 4 clusters were classified using contributed 
environmental variables, namely precipitation (PPT), maximum temperature (Tmax), maximum vapor pressure deficit (VPDmax), mean wind speed 
at 10 m (WindSpeed), aspect (ASP), elevation (ELE), slope (SLP), and fuel vegetation cover (FVC). Varying levels of grey in panels (a) for climate 
divisions and (b) for ecoregions denote the magnitude of total escaped prescribed fire counts. Panel c shows the distribution of standardized 
environmental variables among multivariate escaped Rx fire clusters

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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by a Mediterranean climate, with hot, dry summers and 
cool, moist winters, and is predominantly covered by 
chaparral and oak woodlands. Grasslands are found at 
lower elevations, while patches of pine occur at higher 
elevations (Griffith et  al.  2016). The climate conditions 
in cluster 2 are milder in comparison to cluster 1. This 
is evident through the presence of more precipitation, 
lower temperatures, lower vapor pressure deficits, and 
higher terrain. Prevailing afternoon winds and high veg-
etation cover in this region contribute to the occurrence 
and spread of the escapes.

Cluster 3 includes escaped fires dispersed throughout 
northern California, primarily located in the outer and 
upper regions of cluster 2. These fires span four main 
ecoregions: the Coast Range, Cascades, Klamath Moun-
tains, and Northern Basin and Range. All of these regions 
are characterized by dense forests and rich biodiversity, 
shaped by complex geological formations of volcanic, 
granitic, and sedimentary rocks. While the Cascades and 
Klamath Mountains have a more temperate and moist 
climate, the Eastern Cascades experience greater temper-
ature extremes (Griffith et  al.  2016). Climate and topo-
graphical conditions in this cluster show similarities with 
cluster 2 but exhibit a more extreme nature. During the 
prescribed fire burn window, extreme caution is required 
due to the potentially high wind speed, low air humidity 
and dense vegetation cover (Fig. 5c).

Cluster 4 contrasts with the previous clusters by focus-
ing on escaped prescribed fires that occurred in south-
ern California, with occurrences distributed similarly 
between the South Coast and Southeastern Desert 
regions. While escaped fires in the South Coast region 

were found in areas of high vegetation density, all escaped 
fires in the Southeastern Desert region were exclusively 
associated with agricultural land use, particularly crops, 
as prescribed fires are typically not initiated in natural 
desert habitats. Both regions share common character-
istics, including limited vegetation cover, a hot and arid 
climate year-round, and high wind speeds (Fig. 5c), which 
create significant challenges for the management and 
control of prescribed fires.

The same logistic regression procedure was applied to 
escaped natural vegetation fires, excluding agricultural 
fires resulting in coefficients for each environmental vari-
able that remained unchanged. However, cluster classifi-
cation was not conducted for escaped natural vegetation 
fires due to insufficient data size, which would not yield 
meaningful results.

Furthermore, the assessment of vegetation cover in 
escaped prescribed fires can be extended to specific vege-
tation types and land uses. As shown in Table 2, trees are 
the most prevalent vegetation type in areas of escaped 
fires, followed by herbs, with shrubs being the least com-
mon. Most escapes occurred in areas with 20–60% tree 
cover, while herb cover between 40 and 50% was also 
notably dominant. Within the National Vegetation Clas-
sifications, escapes were most frequently observed in 
California Montane Conifer and California Broadleaf 
forests. Among herb types, California Ruderal Grassland 
and Meadow were prominent, while California Xeric 
Chaparral was a common shrub type in escaped pre-
scribed fires.

Roads were identified as the most frequently impacted 
land use type associated with escaped prescribed fires, 

Table 2 Dominant vegetation classes and land use types in escaped prescribed fires

The table displays the highest-ranking vegetation species until the cumulative percentage reaches 50%

Vegetation type Percentage (%) Accumulated 
percentage (%)

Fuel vegetation cover
 Developed ‑ roads 15.48 15.48

 40 ≤ tree cover < 50% 11.31 26.79

 30 ≤ tree cover < 40% 6.85 33.63

 40 ≤ herb cover < 50% 5.95 39.58

 50 ≤ tree cover < 60% 5.36 44.94

 20 ≤ tree cover < 30% 5.06 50.00

National vegetation classification
 Developed ‑ roads 15.48 15.48

 California Montane Conifer Forest and Woodland 8.63 24.11

 Western Warm Temperate Orchard 8.63 32.74

 California Xeric Chaparral 7.14 39.88

 California Broadleaf Forest and Woodland 6.85 46.73

 California Ruderal Grassland and Meadow 5.95 52.68
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primarily due to their high density in agricultural regions. 
The agricultural area classified as Western Warm Tem-
perate Orchard ranked third among the vegetation types 
affected by these escapes. These findings suggest that a 
significant proportion of escaped prescribed fires origi-
nates from agricultural and land management burns, as 
evidenced by the high incidence of these events occur-
ring near roads. A table detailing escaped prescribed 
fires, excluding agricultural fires, is available in SI (8. 
Results - Spatiotemproal Patterns excluding agricultural 
fires). After excluding agricultural fires, the escaped 
natural vegetation fires predominantly occurred in areas 
with moderate tree, shrub, and herb density. While the 
dominant vegetation types in the escaped natural fires 
remained consistent with all escaped fires, the land use 
types of roads and orchards did not appear in the top 50% 
of common land use types associated with these escapes.

Discussions
Although the temporal statistics demonstrate a general 
increase in the implementation of prescribed fires in 
California, especially from 2010 to 2020 (Fig.  1b), it is 
essential to consider the role of improved data collection 
standards and improved fire data system management, 
which has contributed to more accurate and comprehen-
sive prescribed fire records. In the past, data on escapes 
of prescribed fires on private land were challenging to 
collect, and small-scale, controllable escapes were often 
unreported and undocumented (Weir et al. 2019). Con-
sequently, only escapes that turned into large wildfires, 
and under the management of CAL FIRE’s units or coop-
erating agencies were included in the database, under the 
classification of wildland fires. Since 2014, the number 
of escaped prescribed fires has continued to grow, while 
the total burned area has stabilized-a trend also noted in 
other studies (Miller et  al.  2020; Cummins et  al.  2023). 
This pattern may reflect advancements in technology 
and improved control measures in the implementation of 
prescribed fires.

It is also notable that over the past three decades, almost 
half of escaped prescribed fires (163 out of 310) were initi-
ated by crop fires. This statistic highlights the increased risk 
associated with prescribed fires conducted in agricultural 
settings. The unique features of croplands, such as the pres-
ence of highly combustible materials and their proximity to 
roads and infrastructure, contribute to the likelihood of fire 
escapes and fatalities (Twidwell et al. 2015). Initiating a pre-
scribed fire on private land is often less strict than on public 
land due to differences in governance, resources, and liabil-
ity concerns. Agricultural burn practices, in particular, may 
not always follow the strict protocols required for public 
land prescribed fires, potentially leading to less controlled 

conditions (Wilkin et al. 2024). In the U.S., private landown-
ers must typically obtain permits and comply with local fire 
agency regulations, but these rarely involve the extensive 
ecological and hazard assessments required for public land 
burns. Assistance from prescribed burn associations or 
agencies like Cal Fire is available, often covering planning 
and execution, including liability (McCormack et al. 2023). 
However, this reduced procedural rigor can increase the risk 
of escaped fires, especially in agricultural areas with abun-
dant combustible materials, highlighting the need for stricter 
risk assessments for private land burns. Environmental fac-
tors, such as wind patterns and seasonal droughts, can fur-
ther exacerbate these risks by facilitating the rapid spread 
of flames beyond intended boundaries (Swain et  al.  2023; 
McCormack et al. 2023). The consequences of these escapes 
can be severe, impacting not only crop yields but also neigh-
boring ecosystems and communities. Therefore, it is crucial 
to develop and implement enhanced management strate-
gies and regulatory frameworks to mitigate these risks and 
ensure the safe implementation of prescribed fires in agricul-
tural contexts.

The prescribed fires and escapes have similar sea-
sonal and monthly trends in all of the above statistics, 
displaying two peaks close to the beginning and the end 
of the wildfire season. However, a reversal is observed 
in the months associated with their principal and sec-
ondary peaks. Prescribed fires experience a prominent 
peak subsequent to the summer period, while a minor 
peak emerges preceding summer (Fig.  1c and f ). Con-
versely, the pattern is inverted for escaped prescribed 
fires (Fig. 1d and g), where the major peak occurs prior 
to summer and the minor peak follows the summer sea-
son. The concentrated reduction of accumulated for-
est fuels during these peak months can be attributed to 
suitable fuel moisture and climate conditions, such as 
temperature, humidity, and wind speed, which facilitate 
prescribed burning without excessive dryness and a low 
risk of loss of control (Chiodi et al. 2018). However, the 
reverse of the major and minor peaks indicates that pre-
scribed fires executed right before or at the beginning of 
the wildfire seasons have a higher probability of escape 
and result in larger escaped areas compared to fires 
burned at the end of or right after the wildfire seasons. 
Significant periods of winter in much of California expe-
rience relative humidity, maximum air temperatures, and 
wind speeds that fall within the meteorological thresh-
olds suitable for conducting prescribed fires (Baijnath-
Rodino et al. 2022). These winter periods are identified as 
windows for effective prescribed burning under low-risk 
conditions, as demonstrated by previous studies (York 
et al. 2021; Baijnath-Rodino et al. 2022).
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The general spatial pattern of escapes concentrated 
in northern and central California would be intuitively 
expected, given that more prescribed fires would be 
targeted to occur in regions historically adapted to a 
high-frequency, low-intensity fire regime. The regular 
implementation of crop fires on privately owned land 
in the Central Valley is also a primary contributor to 
escaped prescribed fires. In most regions of California, 
a consistent spatial pattern is observed where areas with 
higher prescribed fire activity tend to experience fewer 
escapes, whereas regions with higher escape frequen-
cies typically have fewer prescribed fire activities nearby, 
often adjacent but non-intersecting with prescribed fire 
hot spots.

The spatial distribution of escaped prescribed fires 
across California underscores the influence of environ-
mental conditions on fire management challenges. The 
identified clusters reflect various levels of impact from 
climates and vegetation characteristics, emphasizing the 
importance of customized fire management strategies. 
Wind speed emerges as a critical factor affecting escape 
likelihood, necessitating advanced predictive models to 
account for California’s dynamic wind patterns. The rapid 
and unpredictable variations in wind speed and direction 
during practical applications impede the comprehensive 
prediction of the entire wind condition profile during 
prescribed fires (Sanjuan et al. 2014; Sharples et al. 2012; 
Simpson et al. (2013). Fuel vegetation cover and specific 
vegetation types, such as California Montane Conifer 
and Ruderal Grassland, play pivotal roles in fire behav-
ior and escape occurrences. The prevalence of escapes 
in areas with moderate tree cover (20−60%) highlights 
vulnerabilities in prescribed fire practices, particularly 
in regions prone to extreme weather events and dense 
vegetation. Agricultural lands are identified as high-risk 
areas for fire escapes, underscoring the need for targeted 
mitigation measures and enhanced monitoring proto-
cols (Regmi et  al.  2023). Integrating these findings into 
fire management policies can mitigate escape risks and 
enhance overall wildfire resilience in California’s diverse 
ecosystems.

Conclusion
In this study, we investigated the temporal and spatial 
patterns of escaped prescribed fires from 1991 to 2020 
in California. Exploring when and where the prescribed 
fires are more likely to escape is critical for resource man-
agers developing forest management and fuel treatment 
strategies. The analyses of this study aim to reveal the 
seasonal and monthly trends of escape prescribed fires, 
their spatial distribution characteristics and structure, 
and the relationship between environmental variables 
and the occurrence of escapes.

The findings show that the implementation of pre-
scribed fires in California has exhibited a significant 
upward trend since 1991, marked by a notable increase 
in both the number of prescribed fires and the total 
burned area. Similarly, the records of escaped prescribed 
fires also show a rising trend from 2010 to 2020. How-
ever, a substantial portion of this increase is attributed 
to enhanced data collection processes and improved 
database completeness, rather than a proportional rise 
in corresponding prescribed fire escapes. Seasonally and 
monthly, prescribed fires and escaped prescribed fires 
display similar patterns, with two peaks occurring close 
to the beginning and end of the wildfire season. Notably, 
the month with the highest probability of escapes does 
not necessarily align with the month recording the most 
escape incidents or the largest escape areas. In addition, 
prescribed fires executed before or at the start of the 
wildfire season are associated with a higher incidence of 
escape and result in larger escaped areas.

The spatial distribution of escaped prescribed fires 
shows cluster patterns across California, which shows 
that in most regions of California, areas with more pre-
scribed fires generally experience fewer escapes, while 
areas with higher occurrences of escapes have less fre-
quent prescribed fire implementations and are often 
adjacent to prescribed fire hot spots.

Among the observed vegetation types in escaped pre-
scribed fires, trees with cover ranging from 20 to 60% are 
the most prevalent, followed by 40 to 50% herbs. Given 
the large coverage and complicated topography in Cali-
fornia, the underlying causes of environmental condi-
tions leading to escapes vary across different regions. 
In the central California Valley, escapes predominantly 
result from high temperatures and low humidity levels. 
Areas close to or located within the Sierra Nevada Moun-
tains and Coastal ranges experience escape events influ-
enced significantly by high wind speeds and abundant 
vegetation cover. Despite comparatively lower vegetation 
density in the south coast and southeast desert regions, 
the confluence of extremely high temperatures and wind 
speeds, as well as low humidity levels and precipitation, 
increases the risk of prescribed fire escapes.

The process of collecting information about pre-
scribed fires revealed several challenges to the cur-
rent ability to quantify the rates of prescribed fire 
escapes. There is no database designed specifically 
to capture prescribed fire escapes across landowner 
groups. Consequently, there is a lack of consistency in 
defining escapes and documenting their occurrences. 
Prescribed fires that occur on private land make up a 
significant proportion of the total number of controlled 
burns that occur in California. However, prescribed 
fires on private lands are not monitored across counties 
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and across burn sizes consistently. If a significantly 
large escape event originates from a prescribed fire on 
private land, only then it is likely to be documented 
in one of the databases used in this study, biasing the 
true picture. However, since prescribed fires that do 
not escape are not monitored consistently, it is chal-
lenging to accurately estimate the rate of prescribed 
fire escapes. Therefore, a more systematic protocol to 
record both prescribed fire events and escape events 
uniformly across all counties will be beneficial in imple-
menting landscape management practices. Future 
research should also focus on refining predictive mod-
els, expanding dataset integration, and implementing 
proactive fire management strategies to mitigate escape 
risks effectively across California’s varied landscapes.
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