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ABSTRACT: Frequent and severe wildfires have led to increased
application of fire suppression products (long-term fire retardants,
water enhancers, and Class A foams) in the American West. While
fire suppressing products used on wildfires must be approved by the
U.S. Forest Service, portions of their formulations are trade secrets.
Increased metals content in soils and surface waters at the wildland-
urban interface has been observed after wildfires but has primarily
been attributed to ash deposition or anthropogenic impact from
nearby urban areas. In this study, metal concentrations in several fire
suppression products (some approved by the U.S. Forest Service,
and some marketed for consumer use) were quantified to evaluate
whether these products could contribute to increased metal
concentrations observed in the environment postfire. Long-term
fire retardants contained concentrations of toxic metals (V, Cr, Mn, Cu, As, Cd, Sb, Ba, Tl, and Pb) 4−2,880 times greater than
drinking water regulatory limits, and potentially greater than some aquatic toxicity thresholds when released into the environment.
Water enhancers and Class A foams contained some metals, but at lower concentrations than fire retardants. Based on these
concentrations and retardant application records, we estimate fire retardant application in the U.S. contributed approximately
380,000 kg of toxic metals to the environment between 2009 and 2021.
KEYWORDS: Fire Retardants, Foams, Firefighting, Chromium, Cadmium, Vanadium

■ INTRODUCTION
The frequency and severity of wildfires has grown in recent
years, especially in the western U.S., with an increase in
seasonal wildfire severity of up to 50% predicted in the next
several decades.1 Ground-based firefighting is often insufficient
alone to contain wildfires,2,3 leading to increased use of aerial
fire suppression, especially in the western U.S. (Figure 1), as a
supplement to ground-based fire containment.2−4 Use of water
alone for aerial fire suppression suffers from drift and
evaporation, which can be mitigated by using aqueous
solutions with chemical additives.2,3,5 Three categories of
products are most commonly used for aerial fire suppression:
Long-term fire retardants, water enhancers, and Class A foams.

The active ingredients in long-term fire retardants are
typically salts (often fertilizer, e.g., ammonium polyphosphate),
which react with cellulose in fuels to form a protective char
layer, slowing fire spread and decreasing fire intensity, even
after the water content of the retardant evaporates.5−7 Water
enhancers and Class A foams alter the physical and chemical
properties of water to improve its performance compared to
pure water alone.5 Water enhancers contain polymers or other
thickeners to improve water’s adherence to fuels, create a thick,
protective wet layer, and minimize drift of the product when

applied aerially.5 Class A foams contain surfactants and
foaming agents which improve drop accuracy and wetting
characteristics.5 The Class A designation indicates that these
products are meant for use on solid combustible materials
(e.g., wood, paper, textiles).5,8,9

To ensure products used for aerial and ground fire
suppression are effective, nontoxic, and noncorrosive, the
U.S. Forest Service (U.S.F.S.) requires extensive product
testing, including flame spreading, visibility, stability, and air
drop characteristic studies.10−13 Approved products are listed
on the U.S.F.S. Qualified Product List (QPL) and are then
available for use by state and federal agencies.14−16 While all
components of product formulations must be disclosed to the
U.S.F.S., publicly available Material Safety Data Sheets specify
up to 20% of the formulation as “proprietary” or “trade secret”,
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a portion of which is typically a corrosion inhibitor used to
protect storage and aircraft tanks.2,3,17−26 Products that are not
listed on the QPL and are marketed for public use often do not
disclose any portion of their formulation.27−31 Potential
environmental impacts of long-term fire retardants have led
to lawsuits and amendments to application procedures.2,3,32,33

Past litigation has focused primarily on the environmental
consequences of the ammonium polyphosphates used as the
active ingredient in commonly used retardants,34,35 rather than
the undisclosed portion of these products.

Increased concentrations of toxic metals, including As, Pb,
and Hg, have been widely observed in nearby surface waters
after wildfires.36−40 Increased metal concentrations after fires,

particularly at the wildland-urban interface, have been
attributed to ash deposition and anthropogenic sources from
urban areas or mining operations, and mobilization of metals
naturally present in soil and charred biomass.36−42 Fire
retardants have been shown to increase metal leaching from
soil during fires, but past studies did not consider the fire
retardant themselves as potential sources of metals to the
environment.43,44 To the best of our knowledge, possible
contribution of metals to the environment from fire
suppression products has not yet been considered.

Despite the absence of published data on metals in fire
suppressants, circumstantial evidence from two sources led us
to consider them as potential sources of environmental metal
contamination. First, in 2016, a U.S.F.S. air tanker base in
Washington State, at which fire suppressants are stored and
loaded into firefighting aircraft, was cited by the WA
Department of Ecology for multiple waste discharge permit
violations, including exceedance of allowable metals concen-
trations (Al, Cd, Cr, Cu, Fe, Mo, V).45 Second, an internal U.S.
Bureau of Land Management guidance document for tanker
bases cautions that “...concentrated...retardant contains ammo-
nia, cadmium, and chromium...”.46 We therefore suspected that
metals might be added to fire retardant products, likely as
corrosion control agents, and disclosed to U.S.F.S. but not in
publicly available MSDS sheets. This study sought to quantify
concentrations of toxic metals in aerially and ground applied
fire suppression products and estimate their annual loadings
into the environment in the Western United States.

■ METHODS AND MATERIALS
Chemical supplier and purity information is provided in Table
S1. Fourteen fire suppression products were obtained from
commercial retailers (manufacturers and product names
provided in Table S2) including fire retardants, water
enhancers, and Class A foams listed on the U.S.F.S. QPL,
and products targeted for consumer home use. Publicly
disclosed compositions of all tested products (from MSDS
sheets) are provided in Table S2. For concentrated products
requiring dilution before application, solutions were prepared
according to manufacturer recommendations (Table S2). All
products were further diluted (50 × ) in 2% HNO3 (in Milli-Q
water, ≥ 18 MΩ cm; Advantage A10, Milli-Q) before analysis.
Dilution factors were determined gravimetrically. If particulate
matter was observed, solids were allowed to settle, and the
supernatant was removed for analysis. Particulate matter was
discarded, and metals were not quantified in insoluble material,
which may serve as another potential source of metals to the
environment. All solutions were stored in polypropylene
centrifuge tubes at room temperature.

Metals in diluted samples were analyzed via inductively
coupled plasma mass spectrometry (ICP-MS, Agilent 7800),
for an initial screening using instrument default settings based
on EPA Method 6020 to determine which metals might be
present.47 Elements detected in fire suppressants of regulatory/
toxicity relevance were quantified after further method
optimization. Cell gas flows were optimized for each element
of concern and corresponding internal standards (Figures S1−
S11). Samples were quantified via three replicate runs
performed on nonconsecutive days to account for instrument
variability. Dilution blanks (i.e., 2% HNO3 prepared in the
same manner as samples) were designated as the lowest
concentration calibration standard (i.e., 0 μg/L) to account for
any background contamination in the Milli-Q diluent or

Figure 1. Application of long-term fire retardants to the western
United States between 2000 and 20112 (A) and 2012 and 20193 (B).
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HNO3. Method details and detection limits are provided in
Text S1 and Table S3. ICP-MS instrument performance
reports are provided in Figures S12−19, an example instru-
ment tune report in Figure S20, and calibration curves for
individual elements in Figures S21−S28. To validate ICP-MS
measurements, metals were additionally quantified in all
products by ICP triple quadrupole mass spectrometry (ICP-
QQQ; Agilent 8900) in our laboratory (Text S3). In parallel,
samples from all products were sent (after 20:1 dilution in 2%
HNO3) to an external laboratory (Eurofins, Seattle, WA) for
analysis by EPA Method 200.8 for further validation

■ RESULTS AND DISCUSSION
Preliminary Screening for Elements of Concern. A

preliminary list of elements present in the fire suppression
products was identified (Text S2; Tables S5−S7). Elements
from that list with known toxicity and/or subject to a U.S. EPA
Maximum Contaminant Level (MCL) in drinking water were
then selected for further quantification. These elements were
vanadium, chromium, manganese, copper, arsenic, cadmium,
antimony, barium, thallium, and lead, which are each either
federally regulated or have California notification levels due to
their human health impacts.48,49 Two elements initially
selected as internal standards, Y and Sc, were detected in
some fire suppression products at levels sufficient to impact
quantification. Alternate internal standards (In, Bi) were used
for subsequent quantification.
Quantification of Metals in Fire Suppression Prod-

ucts. At least eight, and in some cases all ten, examined metals
were present above the detection limit in all evaluated fire
suppression products (Table 1). Because the metal content of
these products is not regulated directly, metal concentrations
were compared to U.S. drinking water EPA MCL values for
context. While these products are not drinking water sources,
concentrations many times in excess of an MCL may indicate
the potential for drinking water contamination if rain flushes
treated slopes into reservoirs. Metal concentrations in fire
suppression products were also compared to California
requirements for hazardous waste, Soluble Threshold Limit
Concentrations (STLC).50

Class A foams, water enhancers, and unlisted products
generally did not exceed or marginally exceeded the MCL for
most metals (Table 1). However, both fire retardants,
including Phos-Chek LC-95W, the colorless version of the
most commonly applied long-term fire retardant, exceeded the
MCL for most metals. The chromium content of LC-95W
(72,700 ± 1,500 μg/L) exceeded the MCL by a factor of 727,
and the cadmium content (14,400 ± 300 μg/L) by a factor of
2,880. Other metals ranged from 0.14−2,380× their
corresponding MCLs (Table 1). The other long-term fire-
retardant, Komodo, also contained levels above MCL thresh-
olds but lower than in LC-95W. Metal concentrations in
samples measured by ICP-QQQ (Table S10) and by EPA
Method 200.8 in an external laboratory (Table S11) broadly
agreed with our measurements, particularly for concentrations
well above the detection limit. The averages of concentrations
measured externally by Method 200.8 and internally by ICP-
QQQ were within 30% of the values in Table 1 for all elements
reported in Phos-Chek LC-95W except Pb (which was
approximately 2× the concentration reported in Table 1).

Concentrations of Cr, Cd (both also federally regulated
under The Resource Conservation and Recovery Act of 1976),
and V in Phos-Chek LC-95W were all above STLC thresholds,

suggesting that Phos-Chek LC95W could legally be charac-
terized as hazardous waste under both federal and CA
regulations.50,51

Most fire suppressants contain a corrosion inhibitor, to
ensure that tanks on firefighting aircraft as well as storage tanks
are not degraded by the product,2,3 although the identity of the
corrosion inhibitor is typically withheld as a trade secret.
Chromium and cadmium are both effective and widely used
aluminum corrosion inhibitors, especially in the aircraft
industry, which could potentially explain the high concen-
trations of Cr and Cd in long-term fire retardants prepared for
aerial deployment.53−57 Additionally, Cr, Cd, Pb, Cu, Mn, and
As contamination has been documented in phosphate ores and
fertilizers.58−63 Because the active ingredient in both long-term
fire retardants evaluated is ammonium polyphosphate,
phosphate ore contamination could potentially contribute
metals to those products, but would not explain metal
contamination in products that are not phosphate-based.
Many of the metals detected in these products are components
of common metal alloys (e.g., stainless steel), potentially
suggesting that leaching from tanks during production or
storage may contribute dissolved metals to the products.64−68

Estimated Environmental Mass Loading of Metals
from Fire Suppressants. According to the U.S. Department
of Agriculture, over 440 million gallons of long-term fire
retardant were applied to federal, state, and private land
between 2009 and 2021, particularly in the western U.S. (e.g.,
California).4 Application rates (Table S12) were combined
with results observed in this study to estimate the annual mass
loading of metals to the environment from fire retardants in
the United States (Figure 2). For this estimation, it was

assumed that all fire retardant applied was Phos-Chek LC-
95W, as Komodo is only approved for ground application.16

The only other QPL-approved product for aerial use, Fortress,
was not approved until December 2022,69 and was not yet
commercially available at the time of this study.

Figure 2. Estimated mass of ten metals applied to public and private
lands in the United States between 2009 and 2021 via fire retardant
drops (application data from ref 4). Estimates produced by
multiplying dropped mass by measured metal concentrations,
assuming all drops were Phos-Chek LC-95W, the colorless version
of the only approved product for aerial use until Dec. 2022.
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Approximately 380,000 kg of the metals examined in this
study were estimated to have been released into the
environment by aerial fire suppression between 2009 and
2021. Vanadium and chromium accounted for 52% (199,000
kg) and 32% (121,000 kg) of the mass, respectively. While
application data were only geographically classified by
individual national forests (i.e., no specific geographic
coordinates available), these data suggested concentration of
suppressant application in certain regions, with 32% of total
metals applied to national forests in Southern California, and
9% applied to the Los Padres National Forest alone.2,3

Accounting for land area, the densest application of metals was
to San Bernadino National Forest (290 g metals per km2).

For context, the mass flux of cadmium reported to be
exported by a stream draining a Southern California watershed
during a postfire storm was compared to Cd concentrations we
report in Phos-Chek LC-95W. 0.25 kg/km2 of Cd was drained
from the 47.1 km2 Arroyo Seco watershed (which burned in
the 2009 Station Fire) during a January 17th, 2010 storm (one
of several storms that water year), corresponding to 11.8 kg Cd
exported.70 Based on our reported concentration of 14.4 mg
Cd/L, we estimate that this mass of Cd corresponds to
817,700 L (216,000 gal) of Phos-Chek LC-95W. Contempo-
rary reports indicate that ∼700,000 gal of fire retardant was
dropped by 9/2/2009 in efforts to suppress the Station Fire,
which was not contained until October 2009.71 While the
extent of Cd contributions from wildfire suppression efforts
versus natural sources is difficult to retroactively quantify, this
estimate suggests that fire suppression may plausibly contribute
appreciably to postfire metal fluxes.

With increased fire retardant usage and concern about
accidental drops into surface waters, a Forest Service guidance
document was developed which defines buffer zones
surrounding surface waters on which fire retardant should
not be dropped.33 Despite this policy, accidental drops into
these buffer zones happen frequently. Between 2009 and 2021,
approximately 1 million gallons (corresponding to 850 kg of
toxic metals) of retardant were dropped in intrusions that
entered surface waters.3 In the case of direct surface water
contamination, we estimate that to remain below U.S. National
Recommended Aquatic Life Criteria standards,72 for every 100
gallons of retardant dropped into surface water, the receiving
water body would need to contain at least 800,000 gallons of
water to remain below aquatic toxicity thresholds. Aquatic
toxicity thresholds are hardness-dependent, so this figure may
vary based on composition of the receiving water (thresholds
used in this study assumed a hardness of 100 mg/L as
CaCO3).
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As rates of aerial fire retardant application have grown, likely
so too have loadings of toxic metals released into the
environment from their use, a trend which may intensify if
wildfire frequency and intensity continues to increase. Further
work should determine the environmental fate of metals
released by aerial fire suppression (i.e., determine whether they
remain in the soil column, permeate into groundwater, or enter
nearby surface waters via runoff), and estimate the extent to
which they contribute to human and ecological health risk.
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