Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the dose-response relationship between fire intensity and mortality shifts toward increased vulnerability under drought, indicating higher mortality with increasing drought at any fire intensity. The trajectory we observed in postfire chlorophyll fluorescence, an indicator of photosynthetic efficiency and stress, was an effective early warning sign of impending tree death. Postfire mortality modeling shows that accurate mortality classification can be achieved using prefire physiology and morphology metrics combined with fire intensity. Variable importance measures indicate that physiological condition and fire intensity have greater influence on the classification accuracy than morphological metrics. The wide range in drought and fire responses observed between this study and others highlights the need for more research on compound disturbance effects.
Sparks, Aaron M.; Blanco, Alexander S.; Lad, Lauren E.; Smith, Alistair M.S.; Adams, Henry D.; Tinkham, Wade T. 2024. Prefire drought intensity drives postfire recovery and mortality in Pinus monticola and Pseudotsuga menziesii saplings. Forest Science. https://doi.org/10.1093/forsci/fxae013.