Skip to main content

Making a World of Difference in Fire and Climate Change

Year of Publication
2014
Publication Type

Together with other stressors, interactions between fire and climate change are expressing their potential to drive ecosystem shifts and losses in biodiversity. Closely linked to human well-being in most regions of the globe, fires and their consequences should no longer be regarded as repeated surprise events.

Vegetation Recovery and Fuel Reduction after Seasonal Burning of Western Juniper

Year of Publication
2014
Publication Type

The decrease in fire activity has been recognized as a main cause of expansion of North American woodlands. Piñon-juniper habitat in the western United States has expanded in area nearly 10-fold since the late 1800s. Woodland control measures using chainsaws, heavy equipment, and prescribed fire are used to restore sagebrush steppe plant communities.

Shrub Seed Banks in Mixed Conifer Forests of Northern California and the Role of Fire in Regulating Abundance

Year of Publication
2012
Publication Type

Understory shrubs play important ecological roles in forests of the western US, but they can also impede early tree growth and lead to fire hazard concerns when very dense. Some of the more common genera (Ceanothus, Arctostaphylos, and Prunus) persist for long periods in the seed bank, even in areas where plants have been shaded out.

A state-and-transition simulation modeling approach for estimating the historical range of variability

Year of Publication
2015
Publication Type

Reference ecological conditions offer important context for land managers as they assess the condition of their landscapes and provide benchmarks for desired future conditions. State-and-transition simulation models (STSMs) are commonly used to estimate reference conditions that can be used to evaluate current ecosystem conditions and to guide land management decisions and activities.

Advancing Dendrochronological Studies of Fire in the United States

Year of Publication
2018
Publication Type

Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship.