Skip to main content

Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California

Year of Publication
2025
Publication Type

Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk.

Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data

Year of Publication
2025
Publication Type

Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.

Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires

Year of Publication
2025
Publication Type

Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects.

Changing fire regimes in the Great Basin USA

Year of Publication
2025
Publication Type

Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition.

Do wood-boring beetles influence the flammability of deadwood?

Publication Type

Global warming increases the risk of wildfire and insect outbreaks, potentially reducing the carbon storage function of coarse woody debris (CWD). There is an increasing focus on the interactive effects of wildfire and insect infestation on forest carbon, but the impact of wood-boring beetle tunnels via their effect on the flammability of deadwood remains unexplored.