Skip to main content

Climate Change and Fire

Displaying 141 - 150 of 219

Wildland fire deficit and surplus in the western United States, 1984-2012

Year of Publication
2015
Publication Type

Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively.

Too hot to trot? Evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat specialist

Year of Publication
2015
Publication Type

Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps).

Are high-severity fires burning at much higher rates recently than historically in dry-forest landscapes of the Western USA.

Year of Publication
2015
Publication Type

Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire.

Climate-induced variations in global wildfire danger from 1979 to 2013

Year of Publication
2015
Publication Type

Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013.

Recent Arctic tundra fire initiates widespread thermokarst development

Year of Publication
2015
Publication Type

Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance.

Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures

Year of Publication
2015
Publication Type

Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm.

Representing climate, disturbance, and vegetation interactions in landscape models

Year of Publication
2015
Publication Type

The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures.