Post-fire management affects species composition but not Douglas-fir regeneration in the Klamath Mountains
Ensuring adequate conifer regeneration after high severity wildfires is a common objective for ecologists and forest managers.
Ensuring adequate conifer regeneration after high severity wildfires is a common objective for ecologists and forest managers.
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the southwestern US.
Wildfires are often perceived as destructive disturbances, but we propose that when integrating evolutionary and socioecological factors, fires in most ecosystems can be understood as natural processes that provide a variety of benefits to humankind. Wildfires generate open habitats that enable the evolution of a diversity of shade‐intolerant plants and animals that have long benefited humans.
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services.
Wildfires underpin the dynamics and diversity of many ecosystems worldwide, and plants show a plethora of adaptive traits for persisting recurrent fires. Many fire-prone ecosystems also harbor a rich fauna; however, knowledge about adaptive traits to fire in animals remains poorly explored.
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood.
Executive Summary: For millennia, wildfires have markedly influenced forests and non-forested landscapes of the western United States (US), and they are increasingly seen as having substantial impacts on society and nature. There is growing concern over what kinds and amounts of fire will achieve desirable outcomes and limit harmful effects on people and nature.
Ecological departure, or how much landscapes have changed from a natural range of variation (NRV), has become a key metric in forest planning and restoration efforts. In this study we define forest restoration need as the specific change in structural stage abundance necessary to move landscapes into the NRV.
Wildland fire behavior research has largely focused on the steady-state interactions between fuels and heat fluxes. Contemporary research is revealing new questions outside the bounds of this simplified approach.
Given regional increases in fire activity in western North American forests, understanding how fire influences the extent and effects of subsequent fires is particularly relevant. Remotely sensed estimates of fire effects have allowed for spatial portioning into different severity categories based on the degree of fire-caused vegetation change.