Skip to main content

Insects and Fire

Displaying 11 - 20 of 54

Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances

Year of Publication
2021
Publication Type

In western North America beginning in the late 19th century, fire suppression and other factors resulted in dense ponderosa pine (Pinus ponderosa) forests that are now prone to high severity wildfire, insect attack, and root diseases. Thinning and prescribed fire are commonly used to remove small trees, fire-intolerant tree species, and shrubs, and to reduce surface and aerial fuels.

Beyond red crowns: complex changes in surface and crown fuels and their interactions 32 years following mountain pine beetle epidemics in south-central Oregon, USA

Year of Publication
2019
Publication Type

Background Mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB), a bark beetle native to western North America, has caused vast areas of tree mortality over the last several decades. The majority of this mortality has been in lodgepole pine (Pinus contorta Douglas ex Loudon) forests and has heightened concerns over the potential for extreme fire behavior across large landscapes.

Fire deficits have increased drought‐sensitivity in dry conifer forests; fire frequency and tree‐ring carbon isotope evidence from Central Oregon

Year of Publication
2019
Publication Type

A century of fire suppression across the Western US has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks.

Predicting post-fire attack of red turpentine or western pine beetle on ponderosa pine and its impact on mortality probability in Pacific Northwest forests

Year of Publication
2019
Publication Type

In ponderosa pine forests of western North America, wildfires are becoming more frequent and affecting larger areas, while prescribed fire is increasingly used to reduce fuels and mitigate potential wildfire severity. Both fire types leave trees that initially survive their burn injuries, but will eventually die.

Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A.

Year of Publication
2017
Publication Type

Forest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology.

Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest

Year of Publication
2017
Publication Type

Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover.