Skip to main content

modeling

Displaying 1 - 10 of 140

A Systematic Review of Trends and Methodologies in Research on the Effects of Wildfires on the Avifauna in Temperate Forests

Year of Publication
2025
Publication Type

Perceptions of the relationships between forest ecosystems and wildfires have evolved. The ecological role of wildfires is now recognised as essential for maintaining the functionality of fire-adapted forests. Although research on the impact of fire on fauna has grown notably, there is a lack of consensus on its global effects due to the variable responses of faunal communities across taxa.

Ecological scenarios: Embracing ecological uncertainty in an era of global change

Year of Publication
2025
Publication Type

Scenarios, or plausible characterizations of the future, can help natural resource stewards plan and act under uncertainty. Current methods for developing scenarios for climate change adaptation planning are often focused on exploring uncertainties in future climate, but new approaches are needed to better represent uncertainties in ecological responses.

A cellular necrosis process model for estimating conifer crown scorch

Year of Publication
2025
Publication Type

Fire-caused tree mortality has major impacts on forest ecosystems. One primary cause of post-fire tree mortality in non-resprouting species is crown scorch, the percentage of foliage in a crown that is killed by heat. Despite its importance, the heat required to kill foliage is not well-understood.

Collapse and restoration of mature forest habitat in California

Year of Publication
2025
Publication Type

Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA.

Climate Change Contributions to US Wildfire Smoke PM2.5 Mortality Between 2006-2020

Year of Publication
2025
Publication Type

RATIONALE Wildfires have increased in frequency and intensity due to climate change and now contribute to nearly half of the annual average of fine particulate matter in the US. While the effects of short-term wildfire-PM2.5 exposure on respiratory diseases are well-described, the impact of climate change on longer duration wildfire-PM2.5 mortality is unknown.

Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application

Year of Publication
2025
Publication Type

Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread.

Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data

Year of Publication
2025
Publication Type

Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.

Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires

Year of Publication
2025
Publication Type

Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects.