Tamm Review: Reforestation for resilience in dry western U.S. forests
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests.
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests.
Many recent wildfires in ponderosa pine (Pinus ponderosa Lawson & C. Lawson) - dominated forests of the western United States have burned more severely than historical ones, generating concern about forest resilience. This concern stems from uncertainty about the ability of ponderosa pine and other co-occurring conifers to regenerate in areas where no surviving trees remain.
Pile burning is a common means of disposing the woody residues of logging and for post-harvest site preparation operations, in spite of the practice’s potential negative effects. To examine the long-term implications of this practice we established a 50-year sequence of pile burns within recovering clear cuts in lodgepole pine forests.
Periodic fire is thought to improve whitebark pine (Pinus albicaulis Engelm.) regeneration by reducing competition and creating openings, but the mechanisms by which fire affects seedling establishment are poorly understood.
The degree to which harvesting can achieve comparable beneficial effects to wildfire on seedling establishment is a key factor in understanding regeneration dynamics in dry interior forest ecosystems.
The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking.
We monitored coarse woody debris dynamics and natural tree regeneration over a 14-year period after the 1991 Warner Creek Fire, a 3631-ha (8,972-ac) mixed severity fire in the western Cascade Range of Oregon.