Skip to main content

fire regimes

Displaying 51 - 60 of 72

Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE

Year of Publication
2016
Publication Type

Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climatechange, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity.

Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

Year of Publication
2016
Publication Type

In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al.

Toward a more ecologically informed view of severe forest fires

Year of Publication
2016
Publication Type

We use the historical presence of high-severity fire patches in mixed-conifer forests of the western United States to make several points that we hope will encourage development of a more ecologically informed view of severe wildland fire effects. First, many plant and animal species use, and have sometimes evolved to depend on, severely burned forest conditions for their persistence.

Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?

Year of Publication
2016
Publication Type

There is a widespread view among land managers and others that the protected status of many forestlands in the western United States corresponds with higher fire severity levels due to historical restrictions on logging that contribute to greater amounts of biomass and fuel loading in less intensively managed areas, particularly after decades of fire suppression.

Modeling wildfire regimes in forest landscapes: abstracting a complex reality

Year of Publication
2015
Publication Type

Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al.

Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

Year of Publication
2015
Publication Type

Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales.

Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

Year of Publication
2014
Publication Type

Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas.