Skip to main content

post-fire

Displaying 71 - 80 of 103

Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone

Year of Publication
2018
Publication Type

High-severity, infrequent fires in forests shape landscape mosaics of stand age and structure for decades to centuries, and forest structure can vary substantially even among same-aged stands. This variability among stand structures can affect landscape-scale carbon and nitrogen cycling, wildlife habitat availability, and vulnerability to subsequent disturbances.

After the Fire Workshop: Connecting People, Ideas and Organizations

Year of Publication
2017
Publication Type

Fire adaptation is about more than pre-fire work. It’s also about considering the needs of a community and the land post-fire. In Washington State, the last several fire seasons have given communities lots of opportunities to learn about post-fire recovery.

Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds

Year of Publication
2017
Publication Type

Fire is a driving force in the North American landscape and predicting post-fire tree mortality is vital to land management. Post-fire tree mortality can have substantial economic and social impacts, and natural resource managers need reliable predictive methods to anticipate potential mortality following fire events.

Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA

Year of Publication
2017
Publication Type

Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa Dougl.

Temporal fuel dynamics following high-severity fire in dry mixed conifer forests of the eastern Cascades, Oregon, USA

Year of Publication
2015
Publication Type

Fire-resilient landscapes require the recurrent use of fire, but successful use of fire in previously burned areas must account for temporal fuel dynamics. We analysed factors influencing temporal fuel dynamics across a 24-year spatial chronosequence of unmanipulated dry mixed conifer forests following high-severity fire.