Year of Publication
2024
Publication Type
- In southwestern US forests, the combined impact of climate change and increased fuel loads due to more than a century of human-caused fire exclusion is leading to larger and more severe wildfires. Restoring frequent fire to dry conifer forests can mitigate high-severity fire risk, but the effects of these treatments on the vegetation composition and structure under projected climate change remain uncertain.
- We used a forest landscape model to assess the impact of thinning and prescribed burns in dry conifer forests across an elevation gradient, encompassing low-elevation pinyon-juniper woodlands, mid-elevation ponderosa pine and high-elevation mixed-conifer forests.
- Our results demonstrated that the treatments decreased the probability of high-severity fires by 42% in the study area. At low elevation, the treatments did not prevent loss in forest cover and biomass with decreases in Pinus edulis and Juniperus monosperma abundances. At mid-elevation, changes in fire effects maintained a greater diversity of tree species by favouring the maintenance of cohorts of old trees, in particular Pinus ponderosa which accumulated 5.41 Mg ha−1 more above-ground biomass than without treatments by late-century. Treatments in dry conifer forests modified fire effects beyond the treated area, resulting in increased cover and biomass of old Picea englemannii and Abies lasiocarpa cohorts.
- Synthesis and applications: Our findings indicate that thinning and prescribed burning can enhance tree species diversity in dry conifer forests by protecting old cohorts from stand-replacing fires. Moreover, our results suggest that treatments mainly implemented in dry pine forests with high risk of high-severity fires can be beneficial for subalpine species conservation by reducing the chance that high-severity fire at mid-elevation is transmitted into high-elevation forest.
Citation
Remy, C. C., Krofcheck, D. J., Keyser, A. R., & Hurteau, M. D. (2024). Restoring frequent fire to dry conifer forests delays the decline of subalpine forests in the southwest United States under projected climate. Journal of Applied Ecology, 61, 1508–1519. https://doi.org/10.1111/1365-2664.14689
Publication Keywords
Publication Topics