Skip to main content

A Homeowner’s Guide to Fire-Resistant Home Construction

Year of Publication
2006
Publication Type

Defending homes from fast-spreading high-intensity wildfires is one of the most difficult and dangerous duties for wildland firefighters. Firefighters United for Safety, Ethics, and Ecology (FUSEE) feels strongly that informing homeowners about fire-resistant construction materials will help wildland firefighters better protect communities, and reduce some of the risks to firefighter safety.

Use of night vision goggles for aerial forest fire protection

Year of Publication
2014
Publication Type

Night-time flight searches using night vision goggles have the potential to improve early aerial detection of forest fires, which could in turn improve suppression effectiveness and reduce costs. Two sets of flight trials explored this potential in an operational context.

Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model

Year of Publication
2014
Publication Type

The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood.

Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States

Year of Publication
2014
Publication Type

We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture.

An accuracy assessment of the MTBS burned area product for shrub-steppe fires in the northern Great Basin, United States

Year of Publication
2014
Publication Type

Although fire is a common disturbance in shrub–steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub–steppe fires that exhibited varying degrees of within-fire patch heterogeneity.