Skip to main content

remote sensing

Displaying 31 - 40 of 58

Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States

Year of Publication
2022
Publication Type

Annual forest area burned (AFAB) in the western United States (US) has increased as a positive exponential function of rising aridity in recent decades. This non-linear response has important implications for AFAB in a changing climate, yet the cause of the exponential AFAB-aridity relationship has not been given rigorous attention.

Mixed-severity wildfire and habitat of an old-forest obligate

Year of Publication
2019
Publication Type

The frequency, extent, and severity of wildfire strongly influence the structure and function of ecosystems. Mixed‐severity fire regimes are the most complex and least understood fire regimes, and variability of fire severity can occur at fine spatial and temporal scales, depending on previous disturbance history, topography, fuel continuity, vegetation type, and weather.

Multitemporal LiDAR improves estimates of fire severity in forested landscapes

Year of Publication
2018
Publication Type

Landsat-based fire severity maps have limited ecological resolution, which can hinder assessments of change to specific resources. Therefore, we evaluated the use of pre- and post-fire LiDAR, and combined LiDAR with Landsat-based relative differenced Normalized Burn Ratio (RdNBR) estimates, to increase the accuracy and resolution of basal area mortality estimation.

A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping

Year of Publication
2017
Publication Type

Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a safety zone. Among the many factors that affect travel rates along an escape route, landscape conditions such as slope, low-lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne light detection and ranging (LiDAR) data.