Research Database
Displaying 1141 - 1160 of 1435
Traditional Ecological Knowledge: A Model for Modern Fire Management?
Year: 2014
For many thousands of years, aboriginal peoples worldwide used fire to manage landscapes. In NorthAmerica, the frequency and extent of fire (both human caused and natural) were much reduced afterEuropean colonization. Fire exclusion became the policy in the United States for most of the 20thcentury as the country became more settled and industrialized. Past fire exclusion has helped producelandscapes that are highly susceptible to uncharacteristically severe wildfire. An urgent challengefor land managers today is to reduce fire risk through several means, including prescribed burning,without…
Publication Type: Report
Taming the Software Chaos: True to its Promise, IFTDSS Eases the Burden of Fuels Treatment Planning - and Does a Lot More Besides
Year: 2014
A key problem reported by the fuels treatment planning community is the difficulty and inefficiency of evaluating and then applying many planning tools and applications. Fuels specialists have struggled to find, load, and learn all the different fuels and fire planning models, not to mention the interface of running, adjusting, and inputting data specific to each model without the ability to easily share inputs/outputs between models. The Interagency Fuels Treatment Decision Support System (IFTDSS) was conceived as a way for users to learn one interface, access a variety of data and models…
Publication Type: Report
Graduate Research Innovation Awards Encourage Young Scientists to Ask Bold Questions
Year: 2014
The Joint Fire Science Program (JFSP), in partnership with the Association for Fire Ecology,offers Graduate Research Innovation (GRIN) awards yearly to a handful of top-quality graduatestudents conducting research in fire science. GRIN awards are intended to nurture the next generationof fire and fuels scientists and managers, enhance their professional development,help them become engaged with their community of peers, and equip them to tacklethe fire and fuels management challenges of today and tomorrow.
Publication Type: Report
Building trust, establishing credibility, and communicating fire issues with the public
Year: 2014
With more people than ever living in the vicinity of the wildland-urban interface, communicating wildland fire management activities and building trust with the public is paramount for safety. Although the time and resources it takes to build and maintain the public’s trust may seem daunting, it may be one of the most important factors determining the long-term viability of a fire management program. Trust is built over time through personal relationships with citizens and communities and also by demonstrating competence and establishing credibility. When trust and confidence have been…
Publication Type: Report
Clearcutting and high severity wildfire have comparable effects on growth of direct-seeded interior Douglas-fir
Year: 2014
The degree to which harvesting can achieve comparable beneficial effects to wildfire on seedling establishment is a key factor in understanding regeneration dynamics in dry interior forest ecosystems. We compared the capacity of harvesting versus wildfire to support establishment of directly-seeded interior Douglas-fir over a three-year period in the interior Douglas-fir biogeoclimatic zone of British Columbia. The mixed-severity McLure Fire of August 2003 affected over 26,000 hectares in the central British Columbia, Canada. Within the fire-affected area, we assessed growth performance in…
Publication Type: Journal Article
Examining fire-prone forest landscapes as coupled human and natural systems
Year: 2014
Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challengesfor understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and externaldrivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches topolicy and management. Institutions and social networks can counter these limitations and promote adaptation. We also develop aconceptual model that includes a robust characterization of social subsystems for a fire-prone…
Publication Type: Journal Article
Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
Year: 2014
As carbon modeling tools become more comprehensive, spatialdata are needed to improve quantitative maps of carbon emissions from fire.The Wildland Fire Emissions Information System (WFEIS) provides mappedestimates of carbon emissions from historical forest fires in the United Statesthrough a web browser. WFEIS improves access to data and provides a consistentapproach to estimating emissions at landscape, regional, and continentalscales. The system taps into data and tools developed by the U.S. Forest Serviceto describe fuels, fuel loadings, and fuel consumption and merges informationfrom the…
Publication Type: Journal Article
Mixed-severity fire in lodgepole-dominated forests: Are historical regimes sustainable on Oregon's Pumice Plateau, USA?
Year: 2014
In parts of central Oregon, coarse-textured pumice substrates limit forest composition to low-density lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson) with scattered ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and a shrub understory dominated by antelope bitterbrush (Purshia tridentata (Pursh) DC.). We reconstructed the historical fire regime from tree rings and simulated fire behavior over 783 hectares of this forest type. For centuries (1650-1900), extensive mixed-severity fires occurred every 26 to 82 years, creating a multi-aged forest and…
Publication Type: Journal Article
Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
Year: 2014
Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between…
Publication Type: Journal Article
Dry Forest Zone Maps
Year: 2014
The Dry Forest Zone (DFZ) is a five-year project to address common natural resource-based economic development challenges through increased networking and capacity building at a regional scale. Sustainable Northwest leads this project in partnership with Wallowa Resources in northeastern Oregon, the Watershed Research and Training Center in northern California, and the Ecosystem Workforce Program at the University of Oregon. The central components of the DFZ strategy are: 1) To build strong local nonprofit organizations and collaborative processes to achieve forest and economic resilience, 2…
Publication Type: Map
Trust: A Planning Guide for Wildfire Agencies & Practitioners
Year: 2014
In increasing numbers, agency personnel, interest groups, and residents of at-risk communities are coming together to consider wildfire problems and taking steps to solve them. Particularly with regard to fire management, trust among parties is an essential element to successful local programs (Olsen & Shindler 2010, Lachapelle & McCool 2012). Despite a growing body of research literature on this topic, there are few practical guides for fire managers and practitioners about how to build and evaluate trust amongst stakeholders. Our intention here is to bring clarity to the trust…
Publication Type: Report
Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests
Year: 2014
Bark beetle-caused tree mortality affects important forest ecosystem processes. Remote sensing methodologies that quantify live and dead basal area (BA) in bark beetle-affected forests can provide valuable information to forest managers and researchers. We compared the utility of light detection and ranging (lidar) and the Landsat-based detection of trends in disturbance and recovery (LandTrendr) algorithm to predict total, live, dead, and percent dead BA in five bark beetle-affected forests in Alaska, Arizona, Colorado, Idaho, and Oregon, USA. The BA response variables were predicted from…
Publication Type: Journal Article
Climate change vulnerability and adaptation in the North Cascades region, Washington
Year: 2014
The North Cascadia Adaptation Partnership (NCAP) is a science-management partnership consisting of the U.S. Department of Agriculture Forest Service Mount Baker-Snoqualmie and Okanogan-Wenatchee National Forests and Pacific Northwest Research Station; North Cascades National Park Complex; Mount Rainier National Park; and University of Washington Climate Impacts Group. These organizations worked with numerous stakeholders over 2 years to identify climate change issues relevant to resource management in the North Cascades and to find solutions that will facilitate the transition of the diverse…
Publication Type: Report
Briefing: Climate and Wildfire in Western U.S. Forests
Year: 2014
Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s. These changes are closely linked to increased temperatures and a greater frequency and intensity of drought. Projected additional future warming implies that wildfire activity may continue to increase in western forests. However, the interaction of changes in climate, fire and other disturbances…
Publication Type: Conference Proceedings
The influence of experimental wind disturbance on forest fuels and fire characteristics
Year: 2014
Current theory in disturbance ecology predicts that extreme disturbances in rapid succession can lead to dramatic changes in species composition or ecosystem processes due to interactions among disturbances. However, the extent to which less catastrophic, yet chronic, disturbances such as wind damage and fire interact is not well studied. In this study, we simulated wind-caused gaps in a Pinus taeda forest in the Piedmont of north-central Georgia using static winching of trees to examine how wind damage may alter fuel characteristics and the behavior of subsequent prescribed fire. We found…
Publication Type: Journal Article
Fire and fuels
Year: 2014
Recent studies of historical fire regimes indicate that fires occurring prior to Euro-American settlement were characterized by a high degree of spatial complexity that was driven by heterogeneity in vegetation/fuels and topography and influenced by variability in climate, which mediated the timing, effects, and extents of fires over time. Although there are many important lessons to learn from the past, we may not be able to rely completely on past forest conditions to provide us with blueprints for current and future forest management. Rather than attempting to achieve a particular forest…
Publication Type: Report
Pagination
- First page
- Previous page
- …
- 56
- 57
- 58
- 59
- 60
- …
- Next page
- Last page